5 research outputs found

    Problems and hopes in nonsymmetric gravity

    Full text link
    We consider the linearized nonsymmetric theory of gravitation (NGT) within the background of an expanding universe and near a Schwarzschild mass. We show that the theory always develops instabilities unless the linearized nonsymmetric lagrangian reduces to a particular simple form. This form contains a gauge invariant kinetic term, a mass term for the antisymmetric metric-field and a coupling with the Ricci curvature scalar. This form cannot be obtained within NGT. Based on the linearized lagrangian we know to be stable, we consider the generation and evolution of quantum fluctuations of the antisymmetric gravitational field (B-field) from inflation up to the present day. We find that a B-field with a mass m ~ 0.03(H_I/10^(13)GeV)^4 eV is an excellent dark matter candidate.Comment: 9 pages, 1 figure. Based on two talks by the authors at the 2nd International Conference on Quantum Theories and Renormalization Group in Gravity and Cosmology (IRGAC) 2006, Barcelon

    Instabilities in the nonsymmetric theory of gravitation

    Get PDF
    We consider the linearized nonsymmetric theory of gravitation (NGT) within the background of an expanding universe and near a Schwarzschild metric. We show that the theory always develops instabilities unless the linearized nonsymmetric lagrangian reduces to a particular simple form. This theory contains a gauge invariant kinetic term, a mass term for the antisymmetric metric-field and a coupling with the Ricci curvature scalar. This form cannot be obtained within NGT. Next we discuss NGT beyond linearized level and conjecture that the instabilities are not a relic of the linearization, but are a general feature of the full theory. Finally we show that one cannot add ad-hoc constraints to remove the instabilities as is possible with the instabilities found in NGT by Clayton.Comment: 29 page

    Vacuum properties of nonsymmetric gravity in de Sitter space

    Get PDF
    We consider quantum effects of a massive antisymmetric tensor field on the dynamics of de Sitter space-time. Our starting point is the most general, stable, linearized Lagrangian arising in nonsymmetric gravitational theories (NGTs), where part of the antisymmetric field mass is generated by the cosmological term. We construct a renormalization group (RG) improved effective action by integrating out one loop vacuum fluctuations of the antisymmetric tensor field and show that, in the limit when the RG scale goes to zero, the Hubble parameter -- and thus the effective cosmological constant -- relaxes rapidly to zero. We thus conclude that quantum loop effects in de Sitter space can dramatically change the infrared sector of the on-shell gravity, making the expansion rate insensitive to the original (bare) cosmological constant.Comment: 32 pages, 2 eps figure

    Scalar cosmological perturbations from inflationary black holes

    Full text link
    We study the correction to the scale invariant power spectrum of a scalar field on de Sitter space from small black holes that formed during a pre-inflationary matter dominated era. The formation probability of such black holes is estimated from primordial Gaussian density fluctuations. We determine the correction to the spectrum by first deriving the Keldysh propagator for a massless scalar field on Schwarzschild-de Sitter space. Our results suggest that the effect is strong enough to be tested -- and possibly even ruled out -- by observations.Comment: 41 pages, 11 figures, published versio
    corecore