240 research outputs found

    Supercurrent Stability in a Quasi-1D Weakly Interacting Bose Gas

    Get PDF
    We discuss a possibility of observing superfluid phenomena in a quasi-1D weakly interacting Bose gas at finite temperatures. The weakness of interaction in combination with generic properties of 1D liquids can result in a situation when relaxational time of supercurrent is essentially larger than the time of experimental observation, and the behavior of the system is indistinguishable from that of a genuine superfluid.Comment: Revtex, 4 pages, no figures; Submitted to Phys. Rev. A (Brief Reports

    Comment on ``One-Dimensional Disordered Bosonic Hubbard Model: A Density-Matrix Renormalization Group Study"

    Full text link
    We present the phase diagram of the system obtained by continuous-time worldline Monte Carlo simulations, and demonstrate that the actual phase diagram is in sharp contrast with that found in Phys. Rev. Lett., 76 (1996) 2937.Comment: 1 page, LaTex, 1 figur

    Criticality in Trapped Atomic Systems

    Get PDF
    We discuss generic limits posed by the trap in atomic systems on the accurate determination of critical parameters for second-order phase transitions, from which we deduce optimal protocols to extract them. We show that under current experimental conditions the in-situ density profiles are barely suitable for an accurate study of critical points in the strongly correlated regime. Contrary to recent claims, the proper analysis of time-of-fight images yields critical parameters accurately.Comment: 4 pages, 3 figures; added reference

    Comment on "Direct Mapping of the Finite Temperature Phase Diagram of Strongly Correlated Quantum Models" by Q. Zhou, Y. Kato, N. Kawashima, and N. Trivedi, Phys. Rev. Lett. 103, 085701 (2009)

    Full text link
    In their Letter, Zhou, Kato, Kawashima, and Trivedi claim that finite-temperature critical points of strongly correlated quantum models emulated by optical lattice experiments can generically be deduced from kinks in the derivative of the density profile of atoms in the trap with respect to the external potential, κ=−dn(r)/dV(r)\kappa = -dn(r)/dV(r). In this comment we demonstrate that the authors failed to achieve their goal: to show that under realistic experimental conditions critical densities nc(T,U)n_c(T,U) can be extracted from density profiles with controllable accuracy.Comment: 1 page, 1 figur
    • …
    corecore