72 research outputs found
Physical Structure of Planetary Nebulae. I. The Owl Nebula
The Owl Nebula is a triple-shell planetary nebula with the outermost shell
being a faint bow-shaped halo. We have obtained deep narrow-band images and
high-dispersion echelle spectra in the H-alpha, [O III], and [N II] emission
lines to determine the physical structure of each shell in the nebula. These
spatio-kinematic data allow us to rule out hydrodynamic models that can
reproduce only the nebular morphology. Our analysis shows that the inner shell
of the main nebula is slightly elongated with a bipolar cavity along its major
axis, the outer nebula is a filled envelope co-expanding with the inner shell
at 40 km/s, and the halo has been braked by the interstellar medium as the Owl
Nebula moves through it. To explain the morphology and kinematics of the Owl
Nebula, we suggest the following scenario for its formation and evolution. The
early mass loss at the TP-AGB phase forms the halo, and the superwind at the
end of the AGB phase forms the main nebula. The subsequent fast stellar wind
compressed the superwind to form the inner shell and excavated an elongated
cavity at the center, but has ceased in the past. At the current old age, the
inner shell is backfilling the central cavity.Comment: 10 pages, 6 figures, 1 table, to appear in the Astronomical Journa
Perinatal grief following neonatal comfort care for lethal fetal condition
BACKGROUND: The objective of the study was to assess perinatal grief experienced after continuing pregnancy and comfort care in women diagnosed with lethal fetal condition compared with termination of pregnancy for fetal anomaly (TOPFA).
METHODS: This was a retrospective observational study which included women who chose to continue their pregnancy after the diagnosis of lethal fetal condition with comfort care support at birth at the Prenatal Diagnosis Center of Rennes Hospital from January 2007 to January 2017. Women were matched with controls who underwent TOPFA for the same type of fetal anomaly, gestational age at diagnosis and year. Women were evaluated by a questionnaire including the Perinatal Grief Scale.
RESULTS: There were 28 patients in the continuing pregnancy group matched with 56 patients in the TOPFA group. Interval between fetal loss and completion of questionnaire was 6±3 years. Perinatal grief score was similar at 61±22 vs 58±18 (p = 0.729) in the continuing pregnancy and TOPFA groups, respectively. Women in the TOPFA group expressed more guilt. The cesarean-section rate in the continuing pregnancy group was 25% .
CONCLUSION: Perinatal grief experienced by women opting for continuing pregnancy and comfort care after diagnosis of a potentially lethal fetal anomaly is not more severe than for those choosing TOPFA
Structure-Guided Evolution of Potent and Selective CHK1 Inhibitors through Scaffold Morphing
Pyrazolopyridine inhibitors with low micromolar potency for CHK1 and good selectivity against CHK2 were previously identified by fragment-based screening. The optimization of the pyrazolopyridines to a series of potent and CHK1-selective isoquinolines demonstrates how fragment-growing and scaffold morphing strategies arising from a structure-based understanding of CHK1 inhibitor binding can be combined to successfully progress fragment-derived hit matter to compounds with activity in vivo. The challenges of improving CHK1 potency and selectivity, addressing synthetic tractability, and achieving novelty in the crowded kinase inhibitor chemical space were tackled by multiple scaffold morphing steps, which progressed through tricyclic pyrimido[2,3-b]azaindoles to N-(pyrazin-2-yl)pyrimidin-4-amines and ultimately to imidazo[4,5-c]pyridines and isoquinolines. A potent and highly selective isoquinoline CHK1 inhibitor (SAR-020106) was identified, which potentiated the efficacies of irinotecan and gemcitabine in SW620 human colon carcinoma xenografts in nude mice
Natural and anthropogenic changes to mangrove distributions in the Pioneer River Estuary (QLD, Australia)
We analyzed a time series of aerial photographs and Landsat satellite imagery of the Pioneer River Estuary (near Mackay, Queensland, Australia) to document both natural and anthropogenic changes in the area of mangroves available to filter river runoff between 1948 and 2002. Over 54 years, there was a net loss of 137 ha (22%) of tidal mangroves during four successive periods that were characterized by different driving mechanisms: (1) little net change (1948– 1962); (2) net gain from rapid mangrove expansion (1962–1972); (3) net loss from clearing and tidal isolation (1972–1991); and (4) net loss from a severe species-specific dieback affecting over 50% of remaining mangrove cover (1991–2002). Manual digitization of aerial photographs was accurate for mapping changes in the boundaries of mangrove distributions, but this technique underestimated the total loss due to dieback. Regions of mangrove dieback were identified and mapped more accurately and efficiently after applying the Normalized Difference Vegetation Index (NDVI) to Landsat Thematic Mapper satellite imagery, and then monitoring changes to the index over time. These remote sensing techniques to map and monitor mangrove changes are important for identifying habitat degradation, both spatially and temporally, in order to prioritize restoration for management of estuarine and adjacent marine ecosystems
Multiparameter Lead Optimization to Give an Oral Checkpoint Kinase 1 (CHK1) Inhibitor Clinical Candidate: (R)-5-((4-((Morpholin-2-ylmethyl)amino)-5-(trifluoromethyl)pyridin-2-yl)amino)pyrazine-2-carbonitrile (CCT245737)
Multiparameter optimization of a series of 5-((4-aminopyridin-2-yl)amino)pyrazine-2-carbonitriles resulted in the identification of a potent and selective oral CHK1 preclinical development candidate with in vivo efficacy as a potentiator of deoxyribonucleic acid (DNA) damaging chemotherapy and as a single agent. Cellular mechanism of action assays were used to give an integrated assessment of compound selectivity during optimization resulting in a highly CHK1 selective adenosine triphosphate (ATP) competitive inhibitor. A single substituent vector directed away from the CHK1 kinase active site was unexpectedly found to drive the selective cellular efficacy of the compounds. Both CHK1 potency and off-target human ether-a-go-go-related gene (hERG) ion channel inhibition were dependent on lipophilicity and basicity in this series. Optimization of CHK1 cellular potency and in vivo pharmacokinetic–pharmacodynamic (PK–PD) properties gave a compound with low predicted doses and exposures in humans which mitigated the residual weak in vitro hERG inhibition
Kaḻiveḷi : vaḷrccikum vaḷm pēṇaliṟkum iṭaiyil..
International audienc
- …