43 research outputs found

    Coherent radar reflections from an electron-beam induced particle cascade

    Get PDF
    Experiment T-576 ran at SLAC in 2018, in development of a new radar-based detection scheme for ultra-high energy neutrinos. In this experiment, the electron beam (N∼109e− at ∼10 GeV) was directed into a plastic target to simulate a 1019 eV neutrino-induced shower in ice. This shower was interrogated with radio frequency (RF) radiation, in an attempt to measure a radar-like reflection from the ionization produced in the target during the particle shower. This technique could be employed to detect the rare interactions of ultra-high-energy neutrinos in dense material, such as polar ice sheets, extending the extant energy range of detected neutrinos up to EeV and beyond. In this proceeding, we detail the experiment and present results from the analysis and the observation of a signal consistent with a radar signal

    Antarctic Surface Reflectivity Measurements from the ANITA-3 and HiCal-1 Experiments

    Get PDF
    The primary science goal of the NASA-sponsored ANITA project is measurement of ultra-high energy neutrinos and cosmic rays, observed via radio-frequency signals resulting from a neutrino- or cosmic ray- interaction with terrestrial matter (atmospheric or ice molecules, e.g.). Accurate inference of the energies of these cosmic rays requires understanding the transmission/reflection of radio wave signals across the ice-air boundary. Satellite-based measurements of Antarctic surface reflectivity, using a co-located transmitter and receiver, have been performed more-or-less continuously for the last few decades. Satellite-based reflectivity surveys, at frequencies ranging from 2--45 GHz and at near-normal incidence, yield generally consistent reflectivity maps across Antarctica. Using the Sun as an RF source, and the ANITA-3 balloon borne radio-frequency antenna array as the RF receiver, we have also measured the surface reflectivity over the interval 200-1000 MHz, at elevation angles of 12-30 degrees, finding agreement with the Fresnel equations within systematic errors. To probe low incidence angles, inaccessible to the Antarctic Solar technique and not probed by previous satellite surveys, a novel experimental approach ("HiCal-1") was devised. Unlike previous measurements, HiCal-ANITA constitute a bi-static transmitter-receiver pair separated by hundreds of kilometers. Data taken with HiCal, between 200--600 MHz shows a significant departure from the Fresnel equations, constant with frequency over that band, with the deficit increasing with obliquity of incidence, which we attribute to the combined effects of possible surface roughness, surface grain effects, radar clutter and/or shadowing of the reflection zone due to Earth curvature effects.Comment: updated to match publication versio

    Modeling in-ice radio propagation with parabolic equation methods

    Full text link
    We investigate the use of parabolic equation (PE) methods for solving radio-wave propagation in polar ice. PE methods provide an approximate solution to Maxwell's equations, in contrast to full-field solutions such as finite-difference-time-domain (FDTD) methods, yet provide a more complete model of propagation than simple geometric ray-tracing (RT) methods that are the current state of the art for simulating in-ice radio detection of neutrino-induced cascades. PE are more computationally efficient than FDTD methods, and more flexible than RT methods, allowing for the inclusion of diffractive effects, and modeling of propagation in regions that cannot be modeled with geometric methods. We present a new PE approximation suited to the in-ice case. We conclude that current ray-tracing methods may be too simplistic in their treatment of ice properties, and their continued use could overestimate experimental sensitivity for in-ice neutrino detection experiments. We discuss the implications for current in-ice Askaryan-type detectors and for the upcoming Radar Echo Telescope; two families of experiments for which these results are most relevant. We suggest that PE methods be investigated further for in-ice radio applications

    Application of parabolic equation methods to in-ice radiowave propagation for ultra high energy neutrino detection experiments

    Get PDF
    Many ultra-high-energy neutrino-detection experiments seek radio wave signals from neutrino interactions deep within the polar ice, and an understanding of in-ice radio wave propagation is therefore of critical importance. The parabolic equation (PE) method for modeling the propagation of radio waves is a suitable intermediate between ray tracing and finite-difference time domain (FDTD) methods in terms of accuracy and computation time. The RET collaboration has developed the first modification of the PE method for use in modeling in-ice radio wave propagation for ultra high energy cosmic ray and neutrino detection experiments. In this proceeding we will detail the motivation for the development of this technique, the process by which it was modified for in-ice use, and showcase the accuracy of its results by comparing to FDTD and ray tracing
    corecore