3 research outputs found

    Exploration of cannabis use and polygenic risk scores on the psychotic symptom progression of a FEP cohort

    Get PDF
    Cannabis use is highly prevalent in first-episode psychosis (FEP) and plays a critical role in its onset and prognosis, but the genetic underpinnings promoting both conditions are poorly understood. Current treatment strategies for cannabis cessation in FEP are clearly inefficacious. Here, we aimed to characterize the association between cannabis-related polygenic risk scores (PRS) on cannabis use and clinical course after a FEP. A cohort of 249 FEP individuals were evaluated during 12 months. Symptom severity was measured with the Positive and Negative Severity Scale and cannabis use with the EuropASI scale. Individual PRS for lifetime cannabis initiation (PRSCI) and cannabis use disorder (PRSCUD) were constructed. Current cannabis use was associated with increased positive symptoms. Cannabis initiation at younger ages conditioned the 12-month symptom progression. FEP patients with higher cannabis PRSCUD reported increased baseline cannabis use. PRSCI was associated with the course of negative and general symptomatology over follow-up. Cannabis use and symptom progression after a FEP were modulated by cannabis PRS, suggesting that lifetime initiation and use disorders may have partially independent genetic factors. These exploratory results may be the first step to identify those FEP patients more vulnerable to cannabis use and worse outcomes to ultimately develop tailored treatments

    Sunflower and climate change: Possibilities of adaptation through breeding and genomic selection

    No full text
    Due to its ability to grow in different agroecological conditions and its moderate drought tolerance, sunflower may become the oil crop of preference in the future, especially in the light of global environmental changes. In the field conditions, sunflower crop is often simultaneously challenged by different biotic and abiotic stresses, and understanding the shared mechanisms contributing to two or more stresses occurring individually or simultaneously is important to improve crop productivity under foreseeable complex stress situations. Exploitation of the available plant genetic resources in combination with the use of modern molecular tools for genome-wide association studies (GWAS) and application of genomic selection (GS) could lead to considerable improvements in sunflower, especially with regard to different stresses and better adaptation to the climate change. In this chapter we present a review of climate-smart (CS) traits and respective genetic resources and tools for their introduction into the cultivated sunflower, thus making it the oil crop resilient to the extreme climatic conditions and well-known and emerging pests and diseases. © Springer Nature Switzerland AG 2019
    corecore