72 research outputs found

    Orbital correlations in the pseudo-cubic \emph{O} and rhombohedral R{R}-phases of LaMnO3_3

    Full text link
    The local and intermediate structure of stoichiometric LaMnO3_3 has been studied in the pseudocubic and rhombohedral phases at high temperatures (300 to 1150 K). Neutron powder diffraction data were collected and a combined Rietveld and high real space resolution atomic pair distribution function analysis carried out. The nature of the Jahn-Teller (JT) transition around 750 K is confirmed to be orbital order to disorder. In the high temperature orthorhombic (OO) and rhombohedral (RR) phases the MnO6_6 octahedra are still fully distorted locally. The data suggest the presence of local orbitally ordered clusters of diameter ∼16\sim 16 \AA (∼\simfour MnO6_6 octahedra) implying strong nearest neighbor JT anti-ferrodistortive coupling.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Le

    Dielectric anomalies and spiral magnetic order in CoCr2O4

    Full text link
    We have investigated the structural, magnetic, thermodynamic, and dielectric properties of polycrystalline CoCr2_2O4_4, an insulating spinel exhibiting both ferrimagnetic and spiral magnetic structures. Below TcT_c = 94 K the sample develops long-range ferrimagnetic order, and we attribute a sharp phase transition at TNT_N ≈\approx 25 K with the onset of long-range spiral magnetic order. Neutron measurements confirm that while the structure remains cubic at 80 K and at 11 K; there is complex magnetic ordering by 11 K. Density functional theory supports the view of a ferrimagnetic semiconductor with magnetic interactions consistent with non-collinear ordering. Capacitance measurements on CoCr2_2O4_4, show a sharp decrease in the dielectric constant at TNT_N, but also an anomaly showing thermal hysteresis falling between approximately TT = 50 K and TT = 57 K. We tentatively attribute the appearance of this higher temperature dielectric anomaly to the development of \textit{short-range} spiral magnetic order, and discuss these results in the context of utilizing dielectric spectroscopy to investigate non-collinear short-range magnetic structures.Comment: & Figure

    Local structure of In_(0.5)Ga_(0.5)As from joint high-resolution and differential pair distribution function analysis

    Full text link
    High resolution total and indium differential atomic pair distribution functions (PDFs) for In_(0.5)Ga_(0.5)As alloys have been obtained by high energy and anomalous x-ray diffraction experiments, respectively. The first peak in the total PDF is resolved as a doublet due to the presence of two distinct bond lengths, In-As and Ga-As. The In differential PDF, which involves only atomic pairs containing In, yields chemical specific information and helps ease the structure data interpretation. Both PDFs have been fit with structure models and the way in that the underlying cubic zinc-blende lattice of In_(0.5)Ga_(0.5)As semiconductor alloy distorts locally to accommodate the distinct In-As and Ga-As bond lengths present has been quantified.Comment: 9 pages, 7 figur
    • …
    corecore