24 research outputs found
Comparison of Algorithms for Short-term Cloud Coverage Prediction
Solar irradiance prediction is vital for the power management and the cost reduction when integrating solar energy. The study is towards a ground image based solar irradiance prediction which is highly dependent on the cloud coverage. The sky images are collected by using ground based sky imager (fisheye lens). In this work, different algorithms for cloud detection being a preparation step for their segmentation are compared
System Setup for Synchronized Visual-Inertial Localization and Mapping
A novel approach for synchronization and calibration of a camera and an inertial measurement unit (IMU) in the research-oriented visual-inertial mapping-and localization-framework maplab is presented. Mapping and localization are based on detecting different features in the environment. In addition to the possibility of creating single-case maps, the included algorithms allow merging maps to increase mapping accuracy and obtain large-scale maps. Furthermore, the algorithms can be used to optimize the collected data. The preliminary results show that after appropriate calibration and synchronization maplab can be used efficiently for mapping, especially in rooms and small building environments
Versuchsaufbau zur Untersuchung und Evaluierung eines Kartierungs- und Lokalisierungssystem
Mit der Implementierung sowie einer anschließenden aussagekräftigen Evaluierung, soll das, visuelle-inertiale Kartierungs- und Lokalisierungssystem maplab analysiert werden. Hierbei basiert die Kartierung bzw. Lokalisierung auf der Detektion von Umgebungsmerkmalen. Neben der Möglichkeit der Kartenerstellung besteht ferner die Option, mehrere Karten zu fusionieren und somit weitreichende Gebiete zu kartieren sowie für weitere Datenauswertungen zu nutzen. Aufgrund der Durchführung und Bewertung der Ergebnisse in unterschiedlichen Anwendungsszenarien zeigt sich, dass maplab besonders zur Kartierung von Räumen bzw. kleinen Gebäudekomplexen geeignet ist. Die Möglichkeit der Kartenfusionierung bietet weiterhin die Option, den Informationsgehalt von Karten zu erhöhen, welches die Effektivität für eine anschließende Lokalisierung steigert. Bei wachsender Kartierungsgröße hingegen zeigt sich jedoch eine Vergrößerung geometrischer Inkonsistenzen.Through implementation and subsequent evaluation, the research-oriented visual-inertial mapping- and localization-framework maplab is analyzed. Mapping and localization are based on detecting different features in the environment. Next to the possibility to create single-case maps, the included algorithms allow merging maps to increase mapping accuracy and obtain large-scale maps. Furthermore, the algorithms can be used to optimize the collected data. The preliminary results show that maplab can be efficiently used for mapping, especially in rooms and small building environments. The possibility of merging maps can be used to increase the overall information of these maps, consequentially improving accuracy at a subsequent localization. However, large-scale mapping results in increased geometrical inconsistency
Object Detection and Mapping with Unmanned Aerial Vehicles Using Convolutional Neural Networks
Significant progress has been made in the field of deep learning through intensive research over the last decade. So-called convolutional neural networks are an essential component of this research. In this type of neural network, the mathematical convolution operator is used to extract characteristics or anomalies. The purpose of this work is to investigate the extent to which it is possible in certain initial settings to input aerial recordings and flight data of Unmanned Aerial Vehicles (UAVs) in the architecture of a neural network and to detect and map an object. Using the calculated contours or dimensions of the so-called bounding boxes, the position of the objects can be determined relative to the current UAV location
Optical 3D Object Recognition for Automated Driving
In this contribution, we propose an system setup for the detection andclassification of objects in autonomous driving applications. The recognition algo-rithm is based upon deep neural networks, operating in the 2D image domain. Theresults are combined with data of a stereo camera system to finally incorporatethe 3D object information into our mapping framework. The detection systemis locally running upon the onboard CPU of the vehicle. Several network archi-tectures are implemented and evaluated with respect to accuracy and run-timedemands for the given camera and hardware setup
Automatisierte akustische Treffererkennung auf einer Steel-Dartscheibe
Bei dem vorgestellten Ansatz soll der Auftreffpunkt des Pfeils durch die Kreuzkorrelation von Audio-Signalen bestimmt werden. Das Auftreffen des Pfeils erzeugt ein charakteristisches Geräusch, welches von mehreren Mikrofonen in bestimmter Anordnung um die Dartscheibe herum in elektrische Signale umgewandelt wird. Mithilfe der Schallgeschwindigkeit und den Zeitdifferenzen, welche die Schallwelle zu den einzelnen Mikrofonen benötigt soll dann der Auftreffpunkt berechnet werden.In the presented approach, the impact point of the arrow is to be determined by the cross-correlation of audio signals. The impact of the arrow generates a characteristic noise, which is converted into electrical signals by several microphones in a certain arrangement around the dartboard. With the help of the speed of sound and the time differences, which the sound wave requires to the individual microphones, the impact point is then to be calculated