1 research outputs found
Applications of the Adversary Method in Quantum Query Algorithms
In the thesis, we use a recently developed tight characterisation of quantum
query complexity, the adversary bound, to develop new quantum algorithms and
lower bounds. Our results are as follows:
* We develop a new technique for the construction of quantum algorithms:
learning graphs.
* We use learning graphs to improve quantum query complexity of the triangle
detection and the -distinctness problems.
* We prove tight lower bounds for the -sum and the triangle sum problems.
* We construct quantum algorithms for some subgraph-finding problems that are
optimal in terms of query, time and space complexities.
* We develop a generalisation of quantum walks that connects electrical
properties of a graph and its quantum hitting time. We use it to construct a
time-efficient quantum algorithm for 3-distinctness.Comment: PhD Thesis, 169 page