46 research outputs found

    An Extended CMOS ISFET Model Incorporating the Physical Design Geometry and the Effects on Performance and Offset Variation

    No full text
    This paper presents an extended model for the CMOS-based ion-sensitive field-effect transistor, incorporating design parameters associated with the physical geometry of the device. This can, for the first time, provide a good match between calculated and measured characteristics by taking into account the effects of nonidealities such as threshold voltage variation and sensor noise. The model is evaluated through a number of devices with varying design parameters (chemical sensing area and MOSFET dimensions) fabricated in a commercially available 0.35-µm CMOS technology. Threshold voltage, subthreshold slope, chemical sensitivity, drift, and noise were measured and compared with the simulated results. The first- and second-order effects are analyzed in detail, and it is shown that the sensors' performance was in agreement with the proposed model

    A CMOS-Based Lab-on-Chip Array for Combined Magnetic Manipulation and Opto-Chemical Sensing

    Get PDF
    Accepted versio

    A CMOS-based Lab-on-Chip Array for the Combined Magnetic Stimulation and Opto-Chemical Sensing of Neural Tissue

    No full text
    This paper presents a novel CMOS-based lab-on-chip platform for non-contact magnetic stimulation and recording of neural tissue. The proposed system is the first of its kind to integrate magnetic-stimulation and opto-chemical sensing in a single pixel, tesselated to form an 8 à 8 array. Fabricated in a commercially-available 0.35 ¿m CMOS technology, the system can be intrinsically used for both optical imaging and pH sensing and includes mechanisms for calibrating out sensor variation and mismatch. In addition to sensory acquisition via an integrated 10-bit ADC, a 64-instruction spatiotemporal pattern generator has been embedded within the array for driving the microscale magnetic neural stimulation. In this application the ISFET-based sensors are used to capacitively-couple neuronal charge in close proximity to the floating gate. Optical imaging hardware has also been embedded to provide topographic detail of the neural tissue.Published versio

    Target cells of human adenovirus type 12 in subtentorial brain tissue of newborn mice. I. Cyto-histomorphologic and immunofluorescent microscopic studies In vivo

    Get PDF
    Human adenovirus type 12 (Ad 12) was inoculated through subtentorial route into inbred newborn mice (C3H/BifB/Ki), and sequential changes of the brain and tumor induction were examined by histological and immunofluorescent methods. Two days after virus inoculation, Ad 12 specific tumor antigen (fluorescent T-antigen) appeared in the cells of ependymal and subventricular matrix layers, choroid plexuses and leptomeninges in the subtentorial as well as the supratentorial brains. After 10 days, these fluorescent positive cells decreased gradually in number but still remained focally beneath the ependyma. Sixty days later, early tumor nodules were detected in the same regions in which remained the fluorescent cells. After 107 days, neurological signs and well-developed tumors were noted in 25 of 63 (30.1%) mice examined. In the cerebellum, both of T-antigens and tumors were limited around the IVth ventricle, but not in the granular layers. Histomorphologically, the tumors were of primitive neuroectodermal origin and consisted of the cells resembling immature matrix cells in the subventricular zone. These findings strongly suggest that the virus has a selective affinity to the remaining matrix cells, but not to cerebellar granular cells, at least, in newborn mice.</p

    Sensing H +

    Full text link

    High-Precision Tuning of State for Memristive Devices by Adaptable Variation-Tolerant Algorithm

    Full text link
    Using memristive properties common for the titanium dioxide thin film devices, we designed a simple write algorithm to tune device conductance at a specific bias point to 1% relative accuracy (which is roughly equivalent to 7-bit precision) within its dynamic range even in the presence of large variations in switching behavior. The high precision state is nonvolatile and the results are likely to be sustained for nanoscale memristive devices because of the inherent filamentary nature of the resistive switching. The proposed functionality of memristive devices is especially attractive for analog computing with low precision data. As one representative example we demonstrate hybrid circuitry consisting of CMOS summing amplifier and two memristive devices to perform analog multiply and accumulate computation, which is a typical bottleneck operation in information processing.Comment: 20 pages, 6 figure

    A review on memristive devices and applications

    No full text
    Recent discovery of the memristor has sparked a new wave of enthusiasm and optimism in revolutionising circuit design, marking a new era for the advancement of neuromorphic and analogue applications. In this work, we consider practical applications in which the highly non-linear dynamic response of the memristor can be employed. It is shown that the device can be utilised as a non-volatile memory element and/or a programmable dynamic load, with particular emphasis given into bio-inspired analog implementations that typically exploit the ability of the memristor to support both logic and memory simultaneously. Finally, a novel concept is presented demonstrating the capacity of memristive networks in realising demanding image processing algorithms and more specifically edge detection

    Application of Maxwell-Wagner polarization in delay lines

    No full text
    The propagation characteristics of metal–insulator–semiconductor (MIS) lines are controlled by the resistivity of the substrate, the operating frequency and the ratio of the semiconductor to insulator layer thicknesses. A strong interfacial polarisation, also known as the Maxwell–Wagner polarisation, is often responsible for the significant slow-down of the propagation velocity of MIS microstrip transmission lines. This phenomenon has been applied in the development of miniature delay lines exhibiting large electrical dimensions. In this paper we review most previously presented designs and we examine the effect of this polarization mechanism under various parameters. Finally, the presented micro-scale delay lines, exhibit comparable slowing factors with our predecessors at the cost of lower attenuation

    Switching mechanisms in microscale memristors

    No full text
    It is only very recently that the memristor, the fourth missing passive element, was discovered, as technological advances and the scaling-down to nanometre dimensions in particular resulted in clearly evident and measurable memristance. At the nanoscale, these devices exhibit variable resistive behaviour, which can be applied in switching networks and memory. Experimental evidence is provided that micrometre-size memristors are viable with practical ROFF/RON ratios
    corecore