482 research outputs found
Application of Maxwell-Wagner polarisation in monolithic technologies
Imperial Users onl
Computing shortest paths in 2D and 3D memristive networks
Global optimisation problems in networks often require shortest path length
computations to determine the most efficient route. The simplest and most
common problem with a shortest path solution is perhaps that of a traditional
labyrinth or maze with a single entrance and exit. Many techniques and
algorithms have been derived to solve mazes, which often tend to be
computationally demanding, especially as the size of maze and number of paths
increase. In addition, they are not suitable for performing multiple shortest
path computations in mazes with multiple entrance and exit points. Mazes have
been proposed to be solved using memristive networks and in this paper we
extend the idea to show how networks of memristive elements can be utilised to
solve multiple shortest paths in a single network. We also show simulations
using memristive circuit elements that demonstrate shortest path computations
in both 2D and 3D networks, which could have potential applications in various
fields
A Biomimetic Model of the Outer Plexiform Layer by Incorporating Memristive Devices
In this paper we present a biorealistic model for the first part of the early vision processing by incorporating memristive nanodevices. The architecture of the proposed network is based on the organisation and functioning of the outer plexiform layer (OPL) in the vertebrate retina. We demonstrate that memristive devices are indeed a valuable building block for neuromorphic architectures, as their highly non-linear and adaptive response could be exploited for establishing ultra-dense networks with similar dynamics to their biological counterparts. We particularly show that hexagonal memristive grids can be employed for faithfully emulating the smoothing-effect occurring at the OPL for enhancing the dynamic range of the system. In addition, we employ a memristor-based thresholding scheme for detecting the edges of grayscale images, while the proposed system is also evaluated for its adaptation and fault tolerance capacity against different light or noise conditions as well as distinct device yields
An Extended CMOS ISFET Model Incorporating the Physical Design Geometry and the Effects on Performance and Offset Variation
This paper presents an extended model for the CMOS-based ion-sensitive field-effect transistor, incorporating design parameters associated with the physical geometry of the device. This can, for the first time, provide a good match between calculated and measured characteristics by taking into account the effects of nonidealities such as threshold voltage variation and sensor noise. The model is evaluated through a number of devices with varying design parameters (chemical sensing area and MOSFET dimensions) fabricated in a commercially available 0.35-µm CMOS technology. Threshold voltage, subthreshold slope, chemical sensitivity, drift, and noise were measured and compared with the simulated results. The first- and second-order effects are analyzed in detail, and it is shown that the sensors' performance was in agreement with the proposed model
A CMOS-Based Lab-on-Chip Array for Combined Magnetic Manipulation and Opto-Chemical Sensing
Accepted versio
- …