101 research outputs found
Control of Recoil Losses in Nanomechanical SiN Membrane Resonators
In the context of a recoil damping analysis, we have designed and produced a membrane resonator equipped with a specific on-chip structure working as a "loss shield" for a circular membrane. In this device the vibrations of the membrane, with a quality factor of , reach the limit set by the intrinsic dissipation in silicon nitride, for all the modes and regardless of the modal shape, also at low frequency. Guided by our theoretical model of the loss shield, we describe the design rationale of the device, which can be used as effective replacement of commercial membrane resonators in advanced optomechanical setups, also at cryogenic temperatures
Silicon Nitride MOMS Oscillator for Room Temperature Quantum Optomechanics
IEEE Optomechanical SiN nano-oscillators in high-finesse Fabry-Perot cavities can be used to investigate the interaction between mechanical and optical degree of freedom for ultra-sensitive metrology and fundamental quantum mechanical studies. In this paper, we present a nano-oscillator made of a high-stress round-shaped SiN membrane with an integrated on-chip 3-D acoustic shield properly designed to reduce mechanical losses. This oscillator works in the range of 200 kHz to 5 MHz and features a mechanical quality factor of Q ≃10⁷ and a Q-frequency product in excess of 6.2 x 10¹² Hz at room temperature, fulfilling the minimum requirement for quantum ground-state cooling of the oscillator in an optomechanical cavity. The device is obtained by MEMS deep reactive-ion etching (DRIE) bulk micromachining with a two-side silicon processing on a silicon-on-insulator wafer. The microfabrication process is quite flexible such that additional layers could be deposited over the SiN membrane before the DRIE steps, if required for a sensing application. Therefore, such oscillator is a promising candidate for quantum sensing applications in the context of the emerging field of quantum technologies
Successful Weight Loss Surgery Improves Eating Control and Energy Metabolism: A Review of the Evidence
Eating behavior is determined by a balance of memories in terms of reward and punishment to satisfy the urge to consume food. Refilling empty energy stores and hedonistic motivation are rewarding aspects of eating. Overfeeding, associated adverse GI effects, and obesity implicate punishment. In the current review, evidence is given for the hypothesis that bariatric surgery affects control over eating behavior.Moreover, any caloric overload will reduce the feeling of satiety. Durable weight loss after bariatric surgery is probably the result of a new equilibrium between reward and punishment, together with a better signaling of satiation due to beneficial metabolic changes.We propose to introduce three main treatment goals for bariatric surgery: 1) acceptable weight loss, 2) improvement of eating control, and 3) metabolic benefit. To achieve this goal, loss of 50% to 70% of excess weight will be appropriate (i.e. 30% to 40% loss of initial weight), depending on the degree of obesity prior to operation
Gravitational Wave Detection by Interferometry (Ground and Space)
Significant progress has been made in recent years on the development of
gravitational wave detectors. Sources such as coalescing compact binary
systems, neutron stars in low-mass X-ray binaries, stellar collapses and
pulsars are all possible candidates for detection. The most promising design of
gravitational wave detector uses test masses a long distance apart and freely
suspended as pendulums on Earth or in drag-free craft in space. The main theme
of this review is a discussion of the mechanical and optical principles used in
the various long baseline systems in operation around the world - LIGO (USA),
Virgo (Italy/France), TAMA300 and LCGT (Japan), and GEO600 (Germany/U.K.) - and
in LISA, a proposed space-borne interferometer. A review of recent science runs
from the current generation of ground-based detectors will be discussed, in
addition to highlighting the astrophysical results gained thus far. Looking to
the future, the major upgrades to LIGO (Advanced LIGO), Virgo (Advanced Virgo),
LCGT and GEO600 (GEO-HF) will be completed over the coming years, which will
create a network of detectors with significantly improved sensitivity required
to detect gravitational waves. Beyond this, the concept and design of possible
future "third generation" gravitational wave detectors, such as the Einstein
Telescope (ET), will be discussed.Comment: Published in Living Reviews in Relativit
The Confrontation between General Relativity and Experiment
The status of experimental tests of general relativity and of theoretical
frameworks for analysing them is reviewed. Einstein's equivalence principle
(EEP) is well supported by experiments such as the Eotvos experiment, tests of
special relativity, and the gravitational redshift experiment. Future tests of
EEP and of the inverse square law are searching for new interactions arising
from unification or quantum gravity. Tests of general relativity at the
post-Newtonian level have reached high precision, including the light
deflection, the Shapiro time delay, the perihelion advance of Mercury, and the
Nordtvedt effect in lunar motion. Gravitational-wave damping has been detected
in an amount that agrees with general relativity to better than half a percent
using the Hulse-Taylor binary pulsar, and other binary pulsar systems have
yielded other tests, especially of strong-field effects. When direct
observation of gravitational radiation from astrophysical sources begins, new
tests of general relativity will be possible.Comment: 89 pages, 8 figures; an update of the Living Review article
originally published in 2001; final published version incorporating referees'
suggestion
Measurement of b hadron lifetimes in exclusive decays containing a J/psi in p-pbar collisions at sqrt(s)=1.96TeV
We report on a measurement of -hadron lifetimes in the fully reconstructed
decay modes B^+ -->J/Psi K+, B^0 --> J/Psi K*, B^0 --> J/Psi Ks, and Lambda_b
--> J/Psi Lambda using data corresponding to an integrated luminosity of 4.3
, collected by the CDF II detector at the Fermilab Tevatron. The
measured lifetimes are B^+ = , B^0 = and Lambda_b = . The lifetime ratios are B^+/B^0 = and Lambda_b/B^0 = . These are the most precise determinations
of these quantities from a single experiment.Comment: revised version. accepted for PRL publicatio
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transientâs position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47Ă10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
- âŠ