1,039 research outputs found
Gutzwiller density functional theory for correlated electron systems
We develop a new density functional theory (DFT) and formalism for correlated
electron systems by taking as reference an interacting electron system that has
a ground state wavefunction which obeys exactly the Gutzwiller approximation
for all one particle operators. The solution of the many electron problem is
mapped onto the self-consistent solution of a set of single particle
Schroedinger equations analogous to standard DFT-LDA calculations.Comment: 4 page
Correcting the polarization effect in low frequency Dielectric Spectroscopy
We demonstrate a simple and robust methodology for measuring and analyzing
the polarization impedance appearing at interface between electrodes and ionic
solutions, in the frequency range from 1 to Hz. The method assumes no
particular behavior of the electrode polarization impedance and it only makes
use of the fact that the polarization effect dies out with frequency. The
method allows a direct and un-biased measurement of the polarization impedance,
whose behavior with the applied voltages and ionic concentration is
methodically investigated. Furthermore, based on the previous findings, we
propose a protocol for correcting the polarization effect in low frequency
Dielectric Spectroscopy measurements of colloids. This could potentially lead
to the quantitative resolution of the -dispersion regime of live cells
in suspension
Dielectric Behavior of Nonspherical Cell Suspensions
Recent experiments revealed that the dielectric dispersion spectrum of
fission yeast cells in a suspension was mainly composed of two sub-dispersions.
The low-frequency sub-dispersion depended on the cell length, whereas the
high-frequency one was independent of it. The cell shape effect was
qualitatively simulated by an ellipsoidal cell model. However, the comparison
between theory and experiment was far from being satisfactory. In an attempt to
close up the gap between theory and experiment, we considered the more
realistic cells of spherocylinders, i.e., circular cylinders with two
hemispherical caps at both ends. We have formulated a Green function formalism
for calculating the spectral representation of cells of finite length. The
Green function can be reduced because of the azimuthal symmetry of the cell.
This simplification enables us to calculate the dispersion spectrum and hence
access the effect of cell structure on the dielectric behavior of cell
suspensions.Comment: Preliminary results have been reported in the 2001 March Meeting of
the American Physical Society. Accepted for publications in J. Phys.:
Condens. Matte
On the Green function of linear evolution equations for a region with a boundary
We derive a closed-form expression for the Green function of linear evolution
equations with the Dirichlet boundary condition for an arbitrary region, based
on the singular perturbation approach to boundary problems.Comment: 9 page
Unique Solutions to Hartree-Fock Equations for Closed Shell Atoms
In this paper we study the problem of uniqueness of solutions to the Hartree
and Hartree-Fock equations of atoms. We show, for example, that the
Hartree-Fock ground state of a closed shell atom is unique provided the atomic
number is sufficiently large compared to the number of electrons. More
specifically, a two-electron atom with atomic number has a unique
Hartree-Fock ground state given by two orbitals with opposite spins and
identical spatial wave functions. This statement is wrong for some , which
exhibits a phase segregation.Comment: 18 page
Refractive-index sensing with ultra-thin plasmonic nanotubes
We study the refractive-index sensing properties of plasmonic nanotubes with
a dielectric core and ultra-thin metal shell. The few-nm thin metal shell is
described by both the usual Drude model and the nonlocal hydrodynamic model to
investigate the effects of nonlocality. We derive an analytical expression for
the extinction cross section and show how sensing of the refractive index of
the surrounding medium and the figure-of-merit are affected by the shape and
size of the nanotubes. Comparison with other localized surface plasmon
resonance sensors reveals that the nanotube exhibits superior sensitivity and
comparable figure-of-merit
Mott Transition of MnO under Pressure: Comparison of Correlated Band Theories
The electronic structure, magnetic moment, and volume collapse of MnO under
pressure are obtained from four different correlated band theory methods; local
density approximation + Hubbard U (LDA+U), pseudopotential self-interaction
correction (pseudo-SIC), the hybrid functional (combined local exchange plus
Hartree-Fock exchange), and the local spin density SIC (SIC-LSD) method. Each
method treats correlation among the five Mn 3d orbitals (per spin), including
their hybridization with three O orbitals in the valence bands and their
changes with pressure. The focus is on comparison of the methods for rocksalt
MnO (neglecting the observed transition to the NiAs structure in the 90-100 GPa
range). Each method predicts a first-order volume collapse, but with variation
in the predicted volume and critical pressure. Accompanying the volume collapse
is a moment collapse, which for all methods is from high-spin to low-spin (5/2
to 1/2), not to nonmagnetic as the simplest scenario would have. The specific
manner in which the transition occurs varies considerably among the methods:
pseudo-SIC and SIC-LSD give insulator-to-metal, while LDA+U gives
insulator-to-insulator and the hybrid method gives an insulator-to-semimetal
transition. Projected densities of states above and below the transition are
presented for each of the methods and used to analyze the character of each
transition. In some cases the rhombohedral symmetry of the
antiferromagnetically ordered phase clearly influences the character of the
transition.Comment: 14 pages, 9 figures. A 7 institute collaboration, Updated versio
- …
