2 research outputs found

    Heart rate, mortality, and the relation with clinical and subclinical cardiovascular diseases: results from the Gutenberg Health Study

    Get PDF
    BACKGROUND: Higher, but also lower resting heart rate (HR), has been associated with increased cardiovascular events and mortality. Little is known about the interplay between HR, cardiovascular risk factors, concomitant diseases, vascular (endothelial) function, neurohormonal biomarkers, and all-cause mortality in the general population. Thus, we aimed to investigate these relationships in a population-based cohort. METHODS: 15,010 individuals (aged 35-74 at enrolment in 2007-2012) from the Gutenberg Health Study were analyzed. Multivariable regression modeling was used to assess the relation between the variables and conditional density plots were generated for cardiovascular risk factors, diseases, and mortality to show their dependence on HR. RESULTS: There were 714 deaths in the total sample at 7.67 +/- 1.68 years of follow-up. The prevalence of diabetes mellitus, arterial hypertension, coronary and peripheral artery disease, chronic heart failure, and previous myocardial infarction exhibited a J-shaped association with HR. Mortality showed a similar relation with a nadir of 64 beats per minute (bpm) in the total sample. Each 10 bpm HR reduction in HR \u3c 64 subjects was independently associated with increased mortality (Hazard Ratio 1.36; 95% confidence interval 1.06-1.75). This increased risk was also present in HR \u3e 64 subjects (Hazard Ratio 1.29; 95% confidence interval 1.19-1.41 per 10 bpm increase in HR). Results found for vascular and neurohormonal biomarkers exhibited a differential picture in subjects with a HR below and above the nadir. DISCUSSION: These results indicate that in addition to a higher HR, a lower HR is associated with increased mortality

    Cigarette Smoking Is Related to Endothelial Dysfunction of Resistance, but Not Conduit Arteries in the General Population-Results From the Gutenberg Health Study

    Get PDF
    Aims: Cigarette smoking is one of the most complex and least understood cardiovascular risk factors. Importantly, differences in the tobacco-related pathophysiology of endothelial dysfunction, an early event in atherogenesis, between circulatory beds remain elusive. Therefore, this study evaluated how smoking impacts endothelial function of conduit and resistance arteries in a large population-based cohort. Methods and results: 15,010 participants (aged 35-74 years) of the Gutenberg Health Study were examined at baseline from 2007 to 2012. Smoking status, pack-years of smoking, and years since quitting smoking were assessed by a computer-assisted interview. Endothelial function of conduit and resistance arteries was determined by flow-mediated dilation (FMD) of the brachial artery, reactive hyperemia index (RHI) using peripheral arterial tonometry, as well as by reflection index (RI) derived from digital photoplethysmography, respectively. Among all subjects, 45.8% had never smoked, 34.7% were former smokers, and 19.4% were current smokers. Mean cumulative smoking exposure was 22.1 +/- 18.1 pack-years in current smokers and mean years since quitting was 18.9 +/- 12.7 in former smokers. In multivariable linear regression models adjusted for typical confounders, smoking status, pack-years of smoking, and years since quitting smoking were independently associated with RHI and RI, while no association was found for FMD. Overall, no clear dose-dependent associations were observed between variables, whereby higher exposure tended to be associated with pronounced resistance artery endothelial dysfunction. Conclusions: Cigarette smoking is associated with altered endothelial function of resistance, but not conduit arteries. The present results suggest that smoking-induced endothelial dysfunction in different circulatory beds may exhibit a differential picture
    corecore