46 research outputs found

    New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities

    No full text
    International audienceA seamless vegetation type map of India (scale 1: 50,000) prepared using medium-resolution IRS LISS-III images is presented. The map was created using an on-screen visual interpretation technique and has an accuracy of 90%, as assessed using 15,565 ground control points. India has hitherto been using potential vegetation/forest type map prepared by Champion and Seth in 1968. We characterized and mapped further the vegetation type distribution in the country in terms of occurrence and distribution, area occupancy, percentage of protected area (PA) covered by each vegetation type, range of elevation, mean annual temperature and precipitation over the past 100 years. A remote sensing-amenable hierarchical classification scheme that accommodates natural and semi-natural systems was conceptualized, and the natural vegetation was classified into forests, scrub/shrub lands and grasslands on the basis of extent of vegetation cover. We discuss the distribution and potential utility of the vegetation type map in a broad range of ecological, climatic and conservation applications from global, national and local perspectives. We used 15,565 ground control points to assess the accuracy of products available globally (i.e., GlobCover, Holdridge’s life zone map and potential natural vegetation (PNV) maps). Hence we recommend that the map prepared herein be used widely. This vegetation type map is the most comprehensive one developed for India so far. It was prepared using 23.5 m seasonal satellite remote sensing data, field samples and information relating to the biogeography, climate and soil. The digital map is now available through a web portal (http://bis.iirs.gov.in)

    Wholegrains: a review on the amino acid profile, mineral content, physicochemical, bioactive composition and health benefits

    No full text

    New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities

    No full text

    Picturing the elephant: Giant piezoelectric activity and the monoclinic phases of relaxor-ferroelectric single crystals

    No full text

    Observation of WWγ\gamma production and search for Hγ\gamma production in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe observation of WWγ\gamma production in proton-proton collisions at a center-of-mass energy of 13 TeV with an integrated luminosity of 138 fb1^{-1} is presented. The observed (expected) significance is 5.6 (4.7) standard deviations. Events are selected by requiring exactly two leptons (one electron and one muon) of opposite charge, moderate missing transverse momentum, and a photon. The measured fiducial cross section for WWγ\gamma is 6.0 ±\pm 0.8 (stat) ±\pm 0.7 (syst) ±\pm 0.6 (modeling) fb, in agreement with the next-to-leading order quantum chromodynamics prediction. The analysis is extended with a search for the associated production of the Higgs boson and a photon, which is generated by a coupling of the Higgs boson to light quarks. The result is used to constrain the Higgs boson couplings to light quarks

    Observation of the J/ψμ+μμ+μ {\mathrm{J}/\psi} \to\mu^{+}\mu^{-}\mu^{+}\mu^{-} decay in proton-proton collisions at s= \sqrt{s} = 13 TeV

    No full text
    The J/ψμ+μμ+μ {\mathrm{J}/\psi} \to\mu^{+}\mu^{-}\mu^{+}\mu^{-} decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb1 ^{-1} . Normalizing to the J/ψμ+μ {\mathrm{J}/\psi} \to\mu^{+}\mu^{-} decay mode leads to a branching fraction of [ [ 10.1 2.7+3.3 ^{+3.3}_{-2.7} (stat) ±\pm 0.4 (syst) ]×] \times 107^{-7}, a value that is consistent with the standard model prediction.The J/ψ→μ+μ-μ+μ- decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6  fb-1. Normalizing to the J/ψ→μ+μ- decay mode leads to a branching fraction of [10.1-2.7+3.3(stat)±0.4(syst)]×10-7, a value that is consistent with the standard model prediction.The J/ψ\psi\toμ+μμ+μ\mu^+\mu^-\mu^+\mu^- decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb1^{-1}. Normalizing to the J/ψ\psi\toμ+μ\mu^+\mu^- decay mode leads to a branching fraction [10.1 2.7+3.3^{+3.3}_{-2.7} (stat) ±\pm 0.4 (syst)] ×\times 107^{-7}, a value that is consistent with the standard model prediction

    Search for direct production of GeV-scale resonances decaying to a pair of muons in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for direct production of low-mass dimuon resonances is performed using s\sqrt{s} = 13 TeV proton-proton collision data collected by the CMS experiment during the 2017-2018 operation of the CERN LHC with an integrated luminosity of 96.6 fb1^{-1}. The search exploits a dedicated high-rate trigger stream that records events with two muons with transverse momenta as low as 3 GeV but does not include the full event information. The search is performed by looking for narrow peaks in the dimuon mass spectrum in the ranges of 1.1-2.6 GeV and 4.2-7.9 GeV. No significant excess of events above the expectation from the standard model background is observed. Model-independent limits on production rates of dimuon resonances within the experimental fiducial acceptance are set. Competitive or world's best limits are set at 90% confidence level for a minimal dark photon model and for a scenario with two Higgs doublets and an extra complex scalar singlet (2HDM+S). Values of the squared kinetic mixing coefficient ε2\varepsilon^2 in the dark photon model above 106^{-6} are excluded over most of the mass range of the search. In the 2HDM+S, values of the mixing angle sin(θH)\sin(\theta_\text{H}) above 0.08 are excluded over most of the mass range of the search with a fixed ratio of the Higgs doublets vacuum expectation tanβ\tan\beta = 0.5
    corecore