41 research outputs found

    Wide-angle effects in multi-tracer power spectra with Doppler corrections

    Get PDF
    We examine the computation of wide-angle corrections to the galaxy power spectrum including redshift-space distortions and relativistic Doppler corrections, and also including multiple tracers with differing clustering, magnification and evolution biases. We show that the inclusion of the relativistic Doppler contribution, as well as radial derivative terms, are crucial for a consistent wide-angle expansion for large-scale surveys, both in the single and multi-tracer cases. We also give for the first time the wide-angle cross-power spectrum associated with the Doppler magnification-galaxy cross correlation, which has been shown to be a new way to test general relativity. In the full-sky power spectrum, the wide-angle expansion allows integrals over products of spherical Bessel functions to be computed analytically as distributional functions, which are then relatively simple to integrate over. We give for the first time a complete discussion and new derivation of the finite part of the divergent integrals of the form ∫0∞drrnjℓ(kr)jℓ′(qr)\int_{0}^{\infty} \mathrm{d} r r^{n} j_{\ell}(k r) j_{\ell^{\prime}}(q r), which are necessary to compute the wide-angle corrections when a general window function is included. This facilitates a novel method for integrating a general analytic function against a pair of spherical Bessel functions.Comment: 41 pages and 2 figures. V3 has substantial improvements and new results. V4 is to appear in JCA

    EVALUATING THE ANTI-MICROBIAL EFFECT OF EUGENOL EXTRACTED FROM OCIMUM SANCTUM

    Get PDF
    Eugenol is a phytochemical present in herbal and medicinal plants. It possess anti tubercular, anti-inflammatory, anti-mutagenic properties. Commercial or synthesised eugenol is used extensively in the market nowadays. The aim is to evaluate the anti-microbial property of eugenol extracted from both the powder and leaf samples of Ocimum sanctum (tulsi) and to have a comparative analysis of the synthetic eugenol and the naturally extracted eugenol from tulsi leaves. The eugenol is extracted from tulsi leaves by steam distillation. For quantitative analysis of the natural eugenol, HPLC and UV Spectroscopy are performed with commercial eugenol as the reference. While Raman Spectroscopy is performed for qualitative analysis of the constituents of tulsi leaves. Membrane casting is done with eugenol as the core ingredient and porosity of the membrane is checked by SEM. Further microbial assay is performed to evaluate the effect of eugenol. From the results it can be concluded that the eugenol extracted from the powder and fresh leaves of tulsi has anti-microbial effect and the membrane composed of eugenol has the capability to retain the eugenol. Keywords: Ocimum sanctum, eugenol, anti-microbial, membrane,anti-microbial

    Has Government Investment Crowded Out Private Investment in India?

    No full text

    Antimicrobial activity, biocompatibility and hydrogelation ability of dipeptide-based amphiphiles

    No full text
    The development of new antibiotics is of increasing importance due to the growing resistance power of microbes against conventional drugs. To this end, cationic peptides are emerging as clinically potent antimicrobial agents. In the present study, we have synthesized six dipeptide-based cationic amphiphiles with different head group structures by varying combinations of L-amino acid residues. These amphiphiles showed remarkable growth inhibiting activity on several Gram-positive (minimum inhibitory concentration (MIC) = 0.1–10 μg/mL) and Gram-negative (MIC = 5–150 μg/mL) bacteria as well as on fungus (MIC = 1–50 μg/mL). The inherent antimicrobial efficacies of these cationic dipeptides were influenced by the head group architecture of the amphiphiles. Encouragingly, these amphiphiles selectively attacked microbial cells, while showing biocompatibility toward mammalian cells. The results show that the rational designing of short peptide-based cationic amphiphiles might serve as a promising strategy in the development of antimicrobial agents with greater cell specificities. In addition, the amphiphiles showed water gelation ability at room temperature. The formation of non-covalent supramolecular networks in gelation was established by microscopic and spectroscopic studies
    corecore