925 research outputs found

    Historical changes in the phenology of British Odonata are related to climate

    Get PDF
    Responses of biota to climate change take a number of forms including distributional shifts, behavioural changes and life history changes. This study examined an extensive set of biological records to investigate changes in the timing of life history transitions (specifically emergence) in British Odonata between 1960 and 2004. The results show that there has been a significant, consistent advance in phenology in the taxon as a whole over the period of warming that is mediated by life history traits. British odonates significantly advanced the leading edge (first quartile date) of the flight period by a mean of 1.51 ±0.060 (SEM, n=17) days per decade or 3.08±1.16 (SEM, n=17) days per degree rise in temperature when phylogeny is controlled for. This study represents the first review of changes in odonate phenology in relation to climate change. The results suggest that the damped temperature oscillations experienced by aquatic organisms compared with terrestrial organisms are sufficient to evoke phenological responses similar to those of purely terrestrial taxa

    Science and health for all children with cancer

    Get PDF
    Each year approximately 429,000 children and adolescents aged 0-19 years are expected to develop cancer. Five-year survival rates exceed 80% for the 45,000 children with cancer in highincome countries (HIC), but are less than 30% for the 384,000 children in low- and middle-income countries (LMIC). Improved survival rates in HIC have been achieved through multidisciplinary care and research, with treatment regimens utilizing mostly generic medicines and optimized risk stratification. Children’s outcomes in LMIC can be improved by adapting effective treatments to local resources and clinical needs, and addressing common problems such as delayed diagnosis and treatment abandonment. By supporting local leaders to increase service capacity and achieve measurable clinical improvements, collaborative partnerships can stimulate governmental and nongovernmental investments. These approaches should bring the new WHO childhood cancer survival target of 60% within reach of all by 2030

    Pediatric cancer care in Africa: SIOP Global Mapping Program report on economic and population indicators

    Get PDF
    Introduction Inalignment with the World Health Organization (WHO) Global Initiative for Childhood Cancer (GICC), the International Society of Pediatric Oncology initiated a program to map global pediatric oncology services. As survival rates in Africa are low and data are scant, this continent was mapped first to identify areas with greatest need. Methods Beginning November 2018, an electronic survey was sent to all known stakeholders, followed by email communications and internet searches to verify data. Availability of pediatric oncologists, chemotherapy, surgical expertise, and radiotherapy was correlated with geographic region, World Bank income status, Universal Health Coverage, population < 15 and < 24 years, percentage of gross domestic product spent on healthcare, and Human Development Index (HDI). Results Responses were received from 48/54 African countries. All three treatment modalities were reportedly available in 9/48 countries, whereas seven countries reported no pediatric oncology services. Negative correlations were detected between provision of all three services and geographic region (P = 0.01), younger median population age (P = 0.002), low-income country status (P = 0.045), and lower HDI (P < 0.001). Conclusion This study provides a comprehensive overview of pediatric oncology care in Africa, emphasizing marked disparities between countries: some have highly specialized services, whereas others have no services. A long-term strategy to eliminate disparities in African pediatric cancer care should be aligned with the WHO GICC aims and facilitated by SIOP Africa. Meeting abstracts SIOP maps pediatric oncology services in Africa to address inequalities in childhood cancer services. Geel J, Ranasinghe N, Davidson A, Challinor J, Howard S, Wollaert S, Myezo K, Renner L, Hessissen L, Bouffet E. 51st Annual Congress of the International Society of Paediatric Oncology (SIOP), Lyon, France, October 2019. Pediatric Blood and Cancer Vol 66 S219-S219. Pediatric cancer care in Africa: SIOP Global Mapping Program report on economic and population indicators

    Genomic signatures of population decline in the malaria mosquito Anopheles gambiae

    Get PDF
    Population genomic features such as nucleotide diversity and linkage disequilibrium are expected to be strongly shaped by changes in population size, and might therefore be useful for monitoring the success of a control campaign. In the Kilifi district of Kenya, there has been a marked decline in the abundance of the malaria vector Anopheles gambiae subsequent to the rollout of insecticide-treated bed nets. To investigate whether this decline left a detectable population genomic signature, simulations were performed to compare the effect of population crashes on nucleotide diversity, Tajima's D, and linkage disequilibrium (as measured by the population recombination parameter ρ). Linkage disequilibrium and ρ were estimated for An. gambiae from Kilifi, and compared them to values for Anopheles arabiensis and Anopheles merus at the same location, and for An. gambiae in a location 200 km from Kilifi. In the first simulations ρ changed more rapidly after a population crash than the other statistics, and therefore is a more sensitive indicator of recent population decline. In the empirical data, linkage disequilibrium extends 100-1000 times further, and ρ is 100-1000 times smaller, for the Kilifi population of An. gambiae than for any of the other populations. There were also significant runs of homozygosity in many of the individual An. gambiae mosquitoes from Kilifi. These results support the hypothesis that the recent decline in An. gambiae was driven by the rollout of bed nets. Measuring population genomic parameters in a small sample of individuals before, during and after vector or pest control may be a valuable method of tracking the effectiveness of interventions

    Theoretical Formulation of Principal Components Analysis to Detect and Correct for Population Stratification

    Get PDF
    The Eigenstrat method, based on principal components analysis (PCA), is commonly used both to quantify population relationships in population genetics and to correct for population stratification in genome-wide association studies. However, it can be difficult to make appropriate inference about population relationships from the principal component (PC) scatter plot. Here, to better understand the working mechanism of the Eigenstrat method, we consider its theoretical or “population” formulation. The eigen-equation for samples from an arbitrary number () of populations is reduced to that of a matrix of dimension , the elements of which are determined by the variance-covariance matrix for the random vector of the allele frequencies. Solving the reduced eigen-equation is numerically trivial and yields eigenvectors that are the axes of variation required for differentiating the populations. Using the reduced eigen-equation, we investigate the within-population fluctuations around the axes of variation on the PC scatter plot for simulated datasets. Specifically, we show that there exists an asymptotically stable pattern of the PC plot for large sample size. Our results provide theoretical guidance for interpreting the pattern of PC plot in terms of population relationships. For applications in genetic association tests, we demonstrate that, as a method of correcting for population stratification, regressing out the theoretical PCs corresponding to the axes of variation is equivalent to simply removing the population mean of allele counts and works as well as or better than the Eigenstrat method

    Diesel Exhaust Particles Activate the Matrix-Metalloproteinase-1 Gene in Human Bronchial Epithelia in a β-Arrestin–Dependent Manner via Activation of RAS

    Get PDF
    BACKGROUND: Diesel exhaust particles (DEPs) are globally relevant air pollutants that exert a detrimental human health impact. However, mechanisms of damage by DEP exposure to human respiratory health and human susceptibility factors are only partially known. Matrix metalloproteinase-1 (MMP-1) has been implied as an (etio)pathogenic factor in human lung and airway diseases such as emphysema, chronic obstructive pulmonary disease, chronic asthma, tuberculosis, and bronchial carcinoma and has been reported to be regulated by DEPs. OBJECTIVE: We elucidated the molecular mechanisms of DEPs' up-regulation of MMP-1. METHODS/RESULTS: Using permanent and primary human bronchial epithelial (HBE) cells at air-liquid interface, we show that DEPs activate the human MMP-1 gene via RAS and subsequent activation of RAF-MEK-ERK1/2 mitogen-activated protein kinase signaling, which can be scaffolded by beta-arrestins. Short interfering RNA mediated beta-arrestin1/2 knockout eliminated formation, subsequent nuclear trafficking of phosphorylated ERK1/2, and resulting MMP-1 transcriptional activation. Transcriptional regulation of the human MMP-1 promoter was strongly influenced by the presence of the -1607GG polymorphism, present in 60-80% of humans, which led to striking up-regulation of MMP-1 transcriptional activation. CONCLUSION: Our results confirm up-regulation of MMP-1 in response to DEPs in HBE and provide new mechanistic insight into how these epithelia, the first line of protection against environmental insults, up-regulate MMP-1 in response to DEP inhalation. These mechanisms include a role for the human -1607GG polymorphism as a susceptibility factor for an accentuated response, which critically depends on the ability of beta-arrestin1/2 to generate scaffolding and nuclear trafficking of phosphorylated ERK1/2

    Primary cilia elongation in response to interleukin-1 mediates the inflammatory response

    Get PDF
    Primary cilia are singular, cytoskeletal organelles present in the majority of mammalian cell types where they function as coordinating centres for mechanotransduction, Wnt and hedgehog signalling. The length of the primary cilium is proposed to modulate cilia function, governed in part by the activity of intraflagellar transport (IFT). In articular cartilage, primary cilia length is increased and hedgehog signaling activated in osteoarthritis (OA). Here, we examine primary cilia length with exposure to the quintessential inflammatory cytokine interleukin-1 (IL-1), which is up-regulated in OA. We then test the hypothesis that the cilium is involved in mediating the downstream inflammatory response. Primary chondrocytes treated with IL-1 exhibited a 50 % increase in cilia length after 3 h exposure. IL-1-induced cilia elongation was also observed in human fibroblasts. In chondrocytes, this elongation occurred via a protein kinase A (PKA)-dependent mechanism. G-protein coupled adenylate cyclase also regulated the length of chondrocyte primary cilia but not downstream of IL-1. Chondrocytes treated with IL-1 exhibit a characteristic increase in the release of the inflammatory chemokines, nitric oxide and prostaglandin E2. However, in cells with a mutation in IFT88 whereby the cilia structure is lost, this response to IL-1 was significantly attenuated and, in the case of nitric oxide, completely abolished. Inhibition of IL-1-induced cilia elongation by PKA inhibition also attenuated the chemokine response. These results suggest that cilia assembly regulates the response to inflammatory cytokines. Therefore, the cilia proteome may provide a novel therapeutic target for the treatment of inflammatory pathologies, including OA

    Circulating mRNAs are differentially expressed in pregnancies with severe placental insufficiency and at high risk of stillbirth

    Get PDF
    Background Fetuses affected by placental insufficiency do not receive adequate nutrients and oxygenation, become growth restricted and acidemic, and can demise. Preterm fetal growth restriction is a severe form of placental insufficiency with a high risk of stillbirth. We set out to identify maternal circulating mRNA transcripts that are differentially expressed in preterm pregnancies complicated by very severe placental insufficiency, in utero fetal acidemia, and are at very high risk of stillbirth. Methods We performed a cohort study across six hospitals in Australia and New Zealand, prospectively collecting blood from 128 pregnancies complicated by preterm fetal growth restriction (delivery < 34 weeks’ gestation) and 42 controls. RNA-sequencing was done on all samples to discover circulating mRNAs associated with preterm fetal growth restriction and fetal acidemia in utero. We used RT-PCR to validate the associations between five lead candidate biomarkers of placental insufficiency in an independent cohort from Europe (46 with preterm fetal growth restriction) and in a third cohort of pregnancies ending in stillbirth. Results In the Australia and New Zealand cohort, we identified five mRNAs that were highly differentially expressed among pregnancies with preterm fetal growth restriction: NR4A2, EMP1, PGM5, SKIL, and UGT2B1. Combining three yielded an area under the receiver operative curve (AUC) of 0.95. Circulating NR4A2 and RCBTB2 in the maternal blood were dysregulated in the presence of fetal acidemia in utero. We validated the association between preterm fetal growth restriction and circulating EMP1, NR4A2, and PGM5 mRNA in a cohort from Europe. Combining EMP1 and PGM5 identified fetal growth restriction with an AUC of 0.92. Several of these genes were differentially expressed in the presence of ultrasound parameters that reflect placental insufficiency. Circulating NR4A2, EMP1, and RCBTB2 mRNA were differentially regulated in another cohort destined for stillbirth, compared to ongoing pregnancies. EMP1 mRNA appeared to have the most consistent association with placental insufficiency in all cohorts. Conclusions Measuring circulating mRNA offers potential as a test to identify pregnancies with severe placental insufficiency and at very high risk of stillbirth. Circulating mRNA EMP1 may be promising as a biomarker of severe placental insufficiency
    corecore