12 research outputs found
Early detection of pre-malignant lesions in a KRASG12D-driven mouse lung cancer model by monitoring circulating free DNA.
Lung cancer is the leading cause of cancer-related death. Two-thirds of cases are diagnosed at an advanced stage that is refractory to curative treatment. Therefore, strategies for the early detection of lung cancer are urgently sought. Total circulating free DNA (cfDNA) and tumour-derived circulating tumour DNA (ctDNA) are emerging as important biomarkers within a 'liquid biopsy' for monitoring human disease progression and response to therapy. Owing to the late clinical diagnosis of lung adenocarcinoma, the potential for cfDNA and ctDNA as early detection biomarkers remains unexplored. Here, using a Cre-regulated genetically engineered mouse model of lung adenocarcinoma development, driven by KrasG12D (the KrasLSL-G12D mouse), we serially tracked the release of cfDNA/ctDNA and compared this with tumour burden as determined by micro-computed tomography (CT). To monitor ctDNA, a droplet digital PCR assay was developed to permit discrimination of the KrasLox-G12D allele from the KrasLSL-G12D and KrasWT alleles. We show that micro-CT correlates with endpoint histology and is able to detect pre-malignant tumours with a combined volume larger than 7 mm3 Changes in cfDNA/ctDNA levels correlate with micro-CT measurements in longitudinal sampling and are able to monitor the emergence of lesions before the adenoma-adenocarcinoma transition. Potentially, this work has implications for the early detection of human lung adenocarcinoma using ctDNA/cfDNA profiling.A video abstract for this article is available at https://youtu.be/Ku8xJJyGs3UThis article has an associated First Person interview with the joint first authors of the paper.Medical Research Counci
Programmable monodisperse glyco-multivalency using self-assembled coordination cages as scaffolds
The multivalent presentation of glycans leads to enhanced binding avidity to lectins due to the cluster glycoside effect. Most materials used as scaffolds for multivalent glycan arrays, such as polymers or nanoparticles, have intrinsic dispersity: meaning that in any sample, a range of valencies are presented and it is not possible to determine which fraction(s) are responsible for binding. The intrinsic dispersity of many multivalent glycan scaffolds also limits their reproducibility and predictability. Here we make use of the structurally programmable nature of self-assembled metal coordination cages, with polyhedral metal-ion cores supporting ligand arrays of predictable sizes, to assemble a 16-membered library of perfectly monodisperse glycoclusters displaying valencies from 2 to 24 through a careful choice of ligand/metal combinations. Mono- and trisaccharides are introduced into these clusters, showing that the synthetic route is tolerant of biologically relevant glycans, including sialic acids. The cluster series demonstrates increased binding to a range of lectins as the number of glycans increases. This strategy offers an alternative to current glycomaterials for control of the valency of three-dimensional (3-D) glycan arrays, and may find application across sensing, imaging, and basic biology
A family of externally-functionalised coordination cages
New synthetic routes are presented to derivatives of a (known) M8L12 cubic coordination cage in which a range of different substituents are attached at the C4 position of the pyridyl rings at either end of the bis(pyrazolyl-pyridine) bridging ligands. The substituents are (i) –CN groups (new ligand LCN), (ii) –CH2OCH2–CCH (containing a terminal alkyne) groups (new ligand LCC); and (iii) –(CH2OCH2)3CH2OMe (tri-ethyleneglycol monomethyl ether) groups (new ligand LPEG). The resulting functionalised ligands combine with M2+ ions (particularly Co2+, Ni2+, Cd2+) to give isostructural [M8L12]16+ cage cores bearing 24 external functional groups; the cages based on LCN (with M2+ = Cd2+) and LCC (with M2+ = Ni2+) have been crystallographically characterised. The value of these is twofold: (i) exterior nitrile or alkene substituents can provide a basis for further synthetic opportunities via ‘Click’ reactions allowing in principle a diverse range of functionalisation of the cage exterior surface; (ii) the exterior –(CH2OCH2)3CH2OMe groups substantially increase cage solubility in both water and in organic solvents, allowing binding constants of cavity-binding guests to be measured under an increased range of conditions
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Early detection of pre-malignant lesions in a KRASG12D-driven mouse lung cancer model by monitoring circulating free DNA
Lung cancer is the leading cause of cancer-related death. Two-thirds of cases are diagnosed at an advanced stage that is refractory to curative treatment. Therefore, strategies for the early detection of lung cancer are urgently sought. Total circulating free DNA (cfDNA) and tumour-derived circulating tumour DNA (ctDNA) are emerging as important biomarkers within a ‘liquid biopsy’ for monitoring human disease progression and response to therapy. Owing to the late clinical diagnosis of lung adenocarcinoma, the potential for cfDNA and ctDNA as early detection biomarkers remains unexplored. Here, using a Cre-regulated genetically engineered mouse model of lung adenocarcinoma development, driven by KrasG12D (the KrasLSL-G12D mouse), we serially tracked the release of cfDNA/ctDNA and compared this with tumour burden as determined by micro-computed tomography (CT). To monitor ctDNA, a droplet digital PCR assay was developed to permit discrimination of the KrasLox-G12D allele from the KrasLSL-G12D and KrasWT alleles. We show that micro-CT correlates with endpoint histology and is able to detect pre-malignant tumours with a combined volume larger than 7 mm3. Changes in cfDNA/ctDNA levels correlate with micro-CT measurements in longitudinal sampling and are able to monitor the emergence of lesions before the adenoma-adenocarcinoma transition. Potentially, this work has implications for the early detection of human lung adenocarcinoma using ctDNA/cfDNA profiling. A video abstract for this article is available at https://youtu.be/Ku8xJJyGs3U. This article has an associated First Person interview with the joint first authors of the paper
Genomic reconstruction of the SARS-CoV-2 epidemic in England
AbstractThe evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.</jats:p