115 research outputs found

    Mechanism of magnetostructural transformation in multifunctional Mn3_3GaC

    Full text link
    Mn3_3GaC undergoes a ferromagnetic to antiferromagnetic, volume discontinuous cubic-cubic phase transition as a function of temperature, pressure and magnetic field. Through a series of temperature dependent x-ray absorption fine structure spectroscopy experiments at the Mn K and Ga K edge, it is shown that the first order magnetic transformation in Mn3_3GaC is entirely due to distortions in Mn sub-lattice and with a very little role for Mn-C interactions. The distortion in Mn sub-lattice results in long and short Mn-Mn bonds with the longer Mn-Mn bonds favoring ferromagnetic interactions and the shorter Mn-Mn bonds favoring antiferromagnetic interactions. At the first order transition, the shorter Mn-Mn bonds exhibit an abrupt decrease in their length resulting in an antiferromagnetic ground state and a strained lattice.Comment: Accepted in J. Appl. Phys. Please contact authors for supplementary informatio

    Resistivity and Thermopower of Ni2.19Mn0.81Ga

    Full text link
    In this paper, we report results of the first studies on the thermoelectric power (TEP) of the magnetic heusler alloy Ni2.19_{2.19}Mn0.81_{0.81}Ga. We explain the observed temperature dependence of the TEP in terms of the crystal field (CF) splitting and compare the observed behavior to that of the stoichiometric system Ni2_2MnGa. The resistivity as a function of temperature of the two systems serves to define the structural transition temperature, TM_M, which is the transition from the high temperature austenitic phase to low temperatures the martensitic phase. Occurrence of magnetic (Curie-Weiss) and the martensitic transition at almost the same temperature in Ni2.19_{2.19}Mn0.81_{0.81}Ga has been explained from TEP to be due to changes in the density of states (DOS) at the Fermi level.Comment: 12 pages, 4 figures, Accepted in Physical Review B vol 70, Issue 1
    corecore