928 research outputs found

    Size fluctuations of the initial source and the event-by-event transverse momentum fluctuations in relativistic heavy-ion collisions

    Full text link
    We show that the event-by-event fluctuations of the transverse size of the initial source, which follow directly from the Glauber treatment of the earliest stage of relativistic heavy-ion collisions, cause, after hydrodynamic evolution, fluctuations of the transverse flow velocity at hadronic freeze-out. This in turn leads to event-by-event fluctuations of the average transverse momentum, p_T. Simulations with GLISSANDO for the Glauber phase, followed by a realistic hydrodynamic evolution and statistical hadronization carried out with THERMINATOR, lead to agreement with the RHIC data. In particular, the magnitude of the effect, its centrality dependence, and the weak dependence on the incident energy are properly reproduced. Our results show that bulk of the observed event-by-event p_T fluctuations may be explained by the fluctuations of the size of the initial source.Comment: 5 pages, 4 figures, version accepted in PR

    Applicability of Monte Carlo Glauber models to relativistic heavy ion collision data

    Full text link
    The accuracy of Monte Carlo Glauber model descriptions of minimum-bias multiplicity frequency distributions is evaluated using data from the Relativistic Heavy Ion Collider (RHIC) within the context of a sensitive, power-law representation introduced previously by Trainor and Prindle (TP). Uncertainties in the Glauber model input and in the mid-rapidity multiplicity frequency distribution data are reviewed and estimated using the TP centrality methodology. The resulting errors in model-dependent geometrical quantities used to characterize heavy ion collisions ({\em i.e.} impact parameter, number of nucleon participants NpartN_{part}, number of binary interactions NbinN_{bin}, and average number of binary collisions per incident participant nucleon ν\nu) are presented for minimum-bias Au-Au collisions at sNN\sqrt{s_{NN}} = 20, 62, 130 and 200 GeV and Cu-Cu collisions at sNN\sqrt{s_{NN}} = 62 and 200 GeV. Considerable improvement in the accuracy of collision geometry quantities is obtained compared to previous Monte Carlo Glauber model studies, confirming the TP conclusions. The present analysis provides a comprehensive list of the sources of uncertainty and the resulting errors in the above geometrical collision quantities as functions of centrality. The capability of energy deposition data from trigger detectors to enable further improvements in the accuracy of collision geometry quantities is also discussed.Comment: 27 pages, 4 figures, 11 table

    Transverse Momentum Correlations in Relativistic Nuclear Collisions

    Full text link
    From the correlation structure of transverse momentum ptp_t in relativistic nuclear collisions we observe for the first time temperature/velocity structure resulting from low-Q2Q^2 partons. Our novel analysis technique does not invoke an {\em a priori} jet hypothesis. ptp_t autocorrelations derived from the scale dependence of fluctuations reveal a complex parton dissipation process in RHIC heavy ion collisions. We also observe structure which may result from collective bulk-medium recoil in response to parton stopping.Comment: 10 pages, 10 figures, proceedings, MIT workshop on fluctuations and correlations in relativistic nuclear collision
    • …
    corecore