2 research outputs found

    Inhibiting Extracellular Cathepsin D Reduces Hepatic Steatosis in Sprague–Dawley Rats <sup>†</sup>

    No full text
    Dietary and lifestyle changes are leading to an increased occurrence of non-alcoholic fatty liver disease (NAFLD). Using a hyperlipidemic murine model for non-alcoholic steatohepatitis (NASH), we have previously demonstrated that the lysosomal protease cathepsin D (CTSD) is involved with lipid dysregulation and inflammation. However, despite identifying CTSD as a major player in NAFLD pathogenesis, the specific role of extracellular CTSD in NAFLD has not yet been investigated. Given that inhibition of intracellular CTSD is highly unfavorable due to its fundamental physiological function, we here investigated the impact of a highly specific and potent small-molecule inhibitor of extracellular CTSD (CTD-002) in the context of NAFLD. Treatment of bone marrow-derived macrophages with CTD-002, and incubation of hepatic HepG2 cells with a conditioned medium derived from CTD-002-treated macrophages, resulted in reduced levels of inflammation and improved cholesterol metabolism. Treatment with CTD-002 improved hepatic steatosis in high fat diet-fed rats. Additionally, plasma levels of insulin and hepatic transaminases were significantly reduced upon CTD-002 administration. Collectively, our findings demonstrate for the first time that modulation of extracellular CTSD can serve as a novel therapeutic modality for NAFLD

    Inhibition of Extracellular Cathepsin D Reduces Hepatic Lipid Accumulation and Leads to Mild Changes in Inflammationin NASH Mice

    Get PDF
    Background &amp; AimsThe lysosomal enzyme, cathepsin D (CTSD) has been implicated in the pathogenesis of non-alcoholic steatohepatitis (NASH), a disease characterised by hepatic steatosis and inflammation. We have previously demonstrated that specific inhibition of the extracellular CTSD leads to improved metabolic features in Sprague-Dawley rats with steatosis. However, the individual roles of extracellular and intracellular CTSD in NASH are not yet known. In the current study, we evaluated the underlying mechanisms of extracellular and intracellular CTSD fractions in NASH-related metabolic inflammation using specific small-molecule inhibitors.MethodsLow-density lipoprotein receptor knock out (Ldlr-/-) mice were fed a high-fat, high cholesterol (HFC) diet for ten weeks to induce NASH. Further, to investigate the effects of CTSD inhibition, mice were injected either with an intracellular (GA-12) or extracellular (CTD-002) CTSD inhibitor or vehicle control at doses of 50 mg/kg body weight subcutaneously once in two days for ten weeks.ResultsLdlr-/- mice treated with extracellular CTSD inhibitor showed reduced hepatic lipid accumulation and an associated increase in faecal bile acid levels as compared to intracellular CTSD inhibitor-treated mice. Furthermore, in contrast to intracellular CTSD inhibition, extracellular CTSD inhibition switched the systemic immune status of the mice to an anti-inflammatory profile. In line, label-free mass spectrometry-based proteomics revealed that extra- and intracellular CTSD fractions modulate proteins belonging to distinct metabolic pathways.ConclusionWe have provided clinically translatable evidence that extracellular CTSD inhibition shows some beneficial metabolic and systemic inflammatory effects which are distinct from intracellular CTSD inhibition. Considering that intracellular CTSD inhibition is involved in essential physiological processes, specific inhibitors capable of blocking extracellular CTSD activity, can be promising and safe NASH drugs
    corecore