3,283 research outputs found
Reduction of Markov Chains using a Value-of-Information-Based Approach
In this paper, we propose an approach to obtain reduced-order models of
Markov chains. Our approach is composed of two information-theoretic processes.
The first is a means of comparing pairs of stationary chains on different state
spaces, which is done via the negative Kullback-Leibler divergence defined on a
model joint space. Model reduction is achieved by solving a
value-of-information criterion with respect to this divergence. Optimizing the
criterion leads to a probabilistic partitioning of the states in the high-order
Markov chain. A single free parameter that emerges through the optimization
process dictates both the partition uncertainty and the number of state groups.
We provide a data-driven means of choosing the `optimal' value of this free
parameter, which sidesteps needing to a priori know the number of state groups
in an arbitrary chain.Comment: Submitted to Entrop
Partitioning Relational Matrices of Similarities or Dissimilarities using the Value of Information
In this paper, we provide an approach to clustering relational matrices whose
entries correspond to either similarities or dissimilarities between objects.
Our approach is based on the value of information, a parameterized,
information-theoretic criterion that measures the change in costs associated
with changes in information. Optimizing the value of information yields a
deterministic annealing style of clustering with many benefits. For instance,
investigators avoid needing to a priori specify the number of clusters, as the
partitions naturally undergo phase changes, during the annealing process,
whereby the number of clusters changes in a data-driven fashion. The
global-best partition can also often be identified.Comment: Submitted to the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP
An Analysis of the Value of Information when Exploring Stochastic, Discrete Multi-Armed Bandits
In this paper, we propose an information-theoretic exploration strategy for
stochastic, discrete multi-armed bandits that achieves optimal regret. Our
strategy is based on the value of information criterion. This criterion
measures the trade-off between policy information and obtainable rewards. High
amounts of policy information are associated with exploration-dominant searches
of the space and yield high rewards. Low amounts of policy information favor
the exploitation of existing knowledge. Information, in this criterion, is
quantified by a parameter that can be varied during search. We demonstrate that
a simulated-annealing-like update of this parameter, with a sufficiently fast
cooling schedule, leads to an optimal regret that is logarithmic with respect
to the number of episodes.Comment: Entrop
Request-and-Reverify: Hierarchical Hypothesis Testing for Concept Drift Detection with Expensive Labels
One important assumption underlying common classification models is the
stationarity of the data. However, in real-world streaming applications, the
data concept indicated by the joint distribution of feature and label is not
stationary but drifting over time. Concept drift detection aims to detect such
drifts and adapt the model so as to mitigate any deterioration in the model's
predictive performance. Unfortunately, most existing concept drift detection
methods rely on a strong and over-optimistic condition that the true labels are
available immediately for all already classified instances. In this paper, a
novel Hierarchical Hypothesis Testing framework with Request-and-Reverify
strategy is developed to detect concept drifts by requesting labels only when
necessary. Two methods, namely Hierarchical Hypothesis Testing with
Classification Uncertainty (HHT-CU) and Hierarchical Hypothesis Testing with
Attribute-wise "Goodness-of-fit" (HHT-AG), are proposed respectively under the
novel framework. In experiments with benchmark datasets, our methods
demonstrate overwhelming advantages over state-of-the-art unsupervised drift
detectors. More importantly, our methods even outperform DDM (the widely used
supervised drift detector) when we use significantly fewer labels.Comment: Published as a conference paper at IJCAI 201
- …