3 research outputs found

    Population Modeling Highlights Drug Disposition Differences Between Tenofovir Alafenamide and Tenofovir Disoproxil Fumarate in the Blood and Semen

    Get PDF
    Understanding antiretroviral disposition in the male genital tract, a distinct viral compartment, can provide insight for the eradication of HIV. Population pharmacokinetic modeling was conducted to investigate the disposition of tenofovir disoproxil fumarate (TDF), tenofovir alafenamide (TAF), and emtricitabine and their metabolites in blood and semen. Blood plasma and seminal plasma (SP) concentrations of tenofovir and emtricitabine were measured, as were tenofovir-diphosphate and emtricitabine-triphosphate concentrations in peripheral blood mononuclear cells (PBMCs) and seminal mononuclear cells. Sequential compartmental modeling described drug disposition in blood and semen. Our modeling suggests slower elimination of apparent tenofovir-diphosphate PBMC and faster elimination of tenofovir SP after administration of TAF compared with TDF, likely reflecting flip-flop kinetics. Additionally, TAF metabolism to tenofovir appeared slower in semen compared with blood; however, SP elimination of TAF-derived tenofovir appeared faster than its blood plasma elimination. These findings provide valuable insight for further mechanistic study of cellular entry and drug metabolism in the male genital tract

    Differential Extracellular, but Similar Intracellular, Disposition of two Tenofovir Formulations in the Male Genital Tract

    Get PDF
    Background: The male genital tract (MGT) is a viral sanctuary and likely HIV reservoir; understanding MGT pharmacokinet-ics (PK) of antiretrovirals (ARVs) used for curative strategies is critical to eradication and cure. Tenofovir alafenamide (TAF) is a tenofovir (TFV) formulation designed to maximize efficacy/minimize toxicity with unknown MGT PK. Methods: HIV-positive and HIV-negative men receiving TFV-based regimens provided six paired blood plasma (BP) and semen samples. Extracellular (TFV, TAF, emtricitabine [FTC]) drug concentrations in BP and seminal plasma (SP), and intracellular metabolite (IM) and endogenous nucleotide (EN) concentrations were measured in peripheral blood mononuclear cells (PBMCs) and seminal mononuclear cells (SMCs). Exposure ratios for SP:BP, SMC:PBMC and IM:EN were calculated from PK parameters generated by noncompartmental analysis. HIV viral load was measured in BP and SP. Results: Sixteen HIV-positive (n=8, TDF/FTC; n=8, TAF/FTC) and eight HIV-negative (TDF/FTC) men provided samples. Median TFV SP:BP ratios differed between TDF and TAF (1.5 versus 7.4), due to lower TFV BP concentrations with TAF coupled with TFV SP concentrations similar to TDF. FTC SP:BP ratios were approximately 3. SMC concentrations of IMs and ENs were a fraction of PBMC concentrations (1–22%), though IM:EN ratios exceed a suggested protective threshold. Conclusions: TAF SP PK was unexpected. IM SMC concentrations were low relative to PBMC, as were EN concentrations, suggesting differences in cell phenotype and lineage in the MGT; these differences in phenotype and pharmacology may have an impact on selecting and dosing ARVs used in cure strategies
    corecore