390 research outputs found
Roadmap of ultrafast x-ray atomic and molecular physics
X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (1020 W cm−2) of x-rays at wavelengths down to ~1 Ångstrom, and HHG provides unprecedented time resolution (~50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of ~280 eV (44 Ångstroms) and the bond length in methane of ~1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science
UPS, XPS, NEXAFS and Computational Investigation of Acrylamide Monomer
Acrylamide is a small conjugated organic compound widely used in industrial processes and agriculture, generally in the form of a polymer. It can also be formed from food and tobacco as a result of Maillard reaction from reducing sugars and asparagine during heat treatment. Due to its toxicity and possible carcinogenicity, there is a risk in its release into the environment or human intake. In order to provide molecular and energetic information, we use synchrotron radiation to record the UV and X-ray photoelectron and photoabsorption spectra of acrylamide. The data are rationalized with the support of density functional theory and ab initio calculations, providing precise assignment of the observed features
Adsorption of 5-Fluorouracil on Au(111) and Cu(111) surfaces
The adsorption of 5-Fluorouracil (5FU) on Au(111) and Cu(111) surfaces as a function of molecular coverage and temperature has been studied, using x-ray photoelectron spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. The nature of 5-Fluorouracil bonding with the two substrates is remarkably different. The Cu substrate forms a chemisorbed complex with 5-FU while the Au substrate shows only physisorption. NEXAFS data at the C, N and O K-edge show a strong angular dependence, indicating that 5-FU lies nearly parallel on the inert Au(111) surface, and at a steep angle on the Cu(111) surface. 5-FU is a biomolecule used for cancer treatment and the results are relevant for those using metal surfaces to prepare 5-FU for applications such as drug delivery.The adsorption of 5-Fluorouracil (5FU) on Au(111) and Cu(111) surfaces as a function of molecular coverage and temperature has been studied, using x-ray photoelectron spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. The nature of 5-Fluorouracil bonding with the two substrates is remarkably different. The Cu substrate forms a chemisorbed complex with 5-FU while the Au substrate shows only physisorption. NEXAFS data at the C, N and O K-edge show a strong angular dependence, indicating that 5-FU lies nearly parallel on the inert Au(111) surface, and at a steep angle on the Cu(111) surface. 5-FU is a biomolecule used for cancer treatment and the results are relevant for those using metal surfaces to prepare 5-FU for applications such as drug delivery
On the interaction of Mg with the (111) and (110) surfaces of ceria
The catalytic activity of cerium dioxide can be modified by deposition of alkaline earth oxide layers or nanoparticles or by substitutional doping of metal cations at the Ce site in ceria. In order to understand the effect of Mg oxide deposition and doping, a combination of experiment and first principles simulations is a powerful tool. In this paper, we examine the interaction of Mg with the ceria (111) surface using both angle resolved X-ray (ARXPS) and resonant (RPES) photoelectron spectroscopy measurements and density functional theory (DFT) corrected for on-site Coulomb interactions (DFT + U). With DFT + U, we also examine the interaction of Mg with the ceria (110) surface. The experiments show that upon deposition of Mg, Ce ions are reduced to Ce3+, while Mg is oxidised. When Mg is incorporated into ceria, no reduced Ce3+ ions are found and oxygen vacancies are present. The DFT + U simulations show that each Mg that is introduced leads to formation of two reduced Ce3+ ions. When Mg is incorporated at a Ce site in the (111) surface, one oxygen vacancy is formed for each Mg to compensate the different valencies, so that all Ce ions are oxidised. The behaviour of Mg upon interaction with the (110) surface is the same as with the (111) surface. The combined results provide a basis for deeper insights into the catalytic behaviour of ceria-based mixed oxide catalysts
Three-Dimensional Shapes of Spinning Helium Nanodroplets
A significant fraction of superfluid helium nanodroplets produced in a
free-jet expansion have been observed to gain high angular momentum resulting
in large centrifugal deformation. We measured single-shot diffraction patterns
of individual rotating helium nanodroplets up to large scattering angles using
intense extreme ultraviolet light pulses from the FERMI free-electron laser.
Distinct asymmetric features in the wide-angle diffraction patterns enable the
unique and systematic identification of the three-dimensional droplet shapes.
The analysis of a large dataset allows us to follow the evolution from
axisymmetric oblate to triaxial prolate and two-lobed droplets. We find that
the shapes of spinning superfluid helium droplets exhibit the same stages as
classical rotating droplets while the previously reported metastable, oblate
shapes of quantum droplets are not observed. Our three-dimensional analysis
represents a valuable landmark for clarifying the interrelation between
morphology and superfluidity on the nanometer scale
A new class of large-amplitude radial-mode hot subdwarf pulsators
Using high-cadence observations from the Zwicky Transient Facility at low Galactic latitudes, we have discovered a new class of pulsating, hot compact stars. We have found four candidates, exhibiting blue colors (g − r ≤ −0.1 mag), pulsation amplitudes of >5%, and pulsation periods of 200–475 s. Fourier transforms of the light curves show only one dominant frequency. Phase-resolved spectroscopy for three objects reveals significant radial velocity, T eff, and log(g) variations over the pulsation cycle, which are consistent with large-amplitude radial oscillations. The mean T eff and log(g) for these stars are consistent with hot subdwarf B (sdB) effective temperatures and surface gravities. We calculate evolutionary tracks using MESA and adiabatic pulsations using GYRE for low-mass, helium-core pre-white dwarfs (pre-WDs) and low-mass helium-burning stars. Comparison of low-order radial oscillation mode periods with the observed pulsation periods show better agreement with the pre-WD models. Therefore, we suggest that these new pulsators and blue large-amplitude pulsators (BLAPs) could be members of the same class of pulsators, composed of young ≈0.25–0.35 M ⊙ helium-core pre-WDs.Published versio
Deep neural networks for classifying complex features in diffraction images
Intense short-wavelength pulses from free-electron lasers and
high-harmonic-generation sources enable diffractive imaging of individual
nano-sized objects with a single x-ray laser shot. The enormous data sets with
up to several million diffraction patterns represent a severe problem for data
analysis, due to the high dimensionality of imaging data. Feature recognition
and selection is a crucial step to reduce the dimensionality. Usually,
custom-made algorithms are developed at a considerable effort to approximate
the particular features connected to an individual specimen, but facing
different experimental conditions, these approaches do not generalize well. On
the other hand, deep neural networks are the principal instrument for today's
revolution in automated image recognition, a development that has not been
adapted to its full potential for data analysis in science. We recently
published in Langbehn et al. (Phys. Rev. Lett. 121, 255301 (2018)) the first
application of a deep neural network as a feature extractor for wide-angle
diffraction images of helium nanodroplets. Here we present the setup, our
modifications and the training process of the deep neural network for
diffraction image classification and its systematic benchmarking. We find that
deep neural networks significantly outperform previous attempts for sorting and
classifying complex diffraction patterns and are a significant improvement for
the much-needed assistance during post-processing of large amounts of
experimental coherent diffraction imaging data.Comment: Published Version. Github code available at:
https://github.com/julian-carpenter/airyne
Valence structures of aromatic bioactive compounds: a combined theoretical and experimental study.
Valence electronic structures of three recently isolated aryl bioactive compounds, namely 2-phenylethanol (2PE), p-hydroxyphenylethanol (HPE) and 4-hydroxybenzaldehyde (HBA), are studied using a combined theoretical and experimental method. Density functional theory-based calculations indicate that the side chains cause electron charge redistribution and therefore influence the aromaticity of the benzene derivatives. The simulated IR spectra further reveal features induced by the side chains. Solvent effects on the IR spectra are simulated using the polarizable continuum model, which exhibits enhancement of the O-H stretch vibrations with significant red-shift of 464 cm(-1) in 2PE. A significant spectral peak splitting of 94 cm(-1) between O(4)-H and O(8)-H of HPE is revealed in an aqueous environment. Experimental measurements for valence binding energy spectra for 2PE, HPE and HBA are presented and analyzed using outer-valence Green function calculations. The experimental (predicted) first ionization energies are measured as 9.19 (8.79), 8.47 (8.27) and 8.97 (8.82) eV for 2PE, HPE and HBA, respectively. The frontier orbitals (highest occupied molecular orbitals, HOMOs, and lowest unoccupied molecular orbitals, LUMOs) have similar atomic orbital characters although the HOMO-LUMO energy gaps are quite different
- …