223 research outputs found

    Beryllium in Ultra-Lithium-Deficient Halo Stars - The Blue Straggler Connection

    Full text link
    There are nine metal-deficient stars that have Li abundances well below the Li plateau that is defined by over 100 unevolved stars with temperatures above 5800 K and values of [Fe/H] << -1.0. Abundances of Be have been determined for most of these ultra-Li-deficient stars in order to investigate the cause of the Li deficiencies. High-resolution and high signal-to-noise spectra have been obtained in the Be II spectral region near 3130 \AA for six ultra-Li-deficient stars with the Keck I telescope and its new uv-sensitive CCD on the upgraded HIRES. The spectrum synthesis technique has been used to determine Be abundances. All six stars are found to have Be deficiencies also. Two have measurable - but reduced - Be and four have only upper limits on Be. These results are consistent with the idea that these Li- and Be-deficient stars are analogous to blue stragglers. The stars have undergone mass transfer events (or mergers) which destroy or dilute both Li and Be. The findings cannot be matched by the models that predict that the deficiencies are due to extra-mixing in a subset of halo stars that were initially rapid rotators, with the possible exception of one star, G 139-8. Because the ultra-Li-deficient stars are also Be-deficient, they appear to be genuine outliers in population of halo stars used to determine the value of primordial Li; they no longer have the Li in their atmospheres that was produced in the Big Bang.Comment: 17 pages of text, 12 figures, 3 tables Submitted to Ap

    Classical Cepheids, what else?

    Full text link
    We present new and independent estimates of the distances to the Magellanic Clouds (MCs) using near-infrared (NIR) and optical--NIR period--Wesenheit (PW) relations. The slopes of the PW relations are, within the dispersion, linear over the entire period range and independent of metal content. The absolute zero points were fixed using Galactic Cepheids with distances based on the infrared surface-brightness method. The true distance modulus we found for the Large Magellanic Cloud---(mM)0=18.48±0.01±0.10(m-M)_0 = 18.48 \pm 0.01 \pm 0.10 mag---and the Small Magellanic Cloud---(mM)0=18.94±0.01±0.10(m-M)_0 = 18.94 \pm 0.01 \pm 0.10 mag---agree quite well with similar distance determinations based on robust distance indicators. We also briefly discuss the evolutionary and pulsation properties of MC Cepheids

    Effect of Long-lived Strongly Interacting Relic Particles on Big Bang Nucleosynthesis

    Full text link
    It has been suggested that relic long-lived strongly interacting massive particles (SIMPs, or XX particles) existed in the early universe. We study effects of such long-lived unstable SIMPs on big bang nucleosynthesis (BBN) assuming that such particles existed during the BBN epoch, but then decayed long before they could be detected. The interaction strength between an XX particle and a nucleon is assumed to be similar to that between nucleons. We then calculate BBN in the presence of the unstable neutral charged X0X^0 particles taking into account the capture of X0X^0 particles by nuclei to form XX-nuclei. We also study the nuclear reactions and beta decays of XX-nuclei. We find that SIMPs form bound states with normal nuclei during a relatively early epoch of BBN. This leads to the production of heavy elements which remain attached to them. Constraints on the abundance of X0X^0 particles during BBN are derived from observationally inferred limits on the primordial light element abundances. Particle models which predict long-lived colored particles with lifetimes longer than \sim 200 s are rejected based upon these constraints.Comment: 19 pages, 4 figure

    Evolution of Li, Be and B in the Galaxy

    Get PDF
    In this paper we study the production of Li, Be and B nuclei by Galactic cosmic ray spallation processes. We include three kinds of processes: (i) spallation by light cosmic rays impinging on interstellar CNO nuclei (direct processes); (ii) spallation by CNO cosmic ray nuclei impinging on interstellar p and 4He (inverse processes); and (iii) alpha-alpha fusion reactions. The latter dominate the production of 6Li and 7Li. We calculate production rates for a closed-box Galactic model, verifying the quadratic dependence of the Be and B abundances for low values of Z. These are quite general results and are known to disagree with observations. We then show that the multi-zone multi-population model we used previously for other aspects of Galactic evolution produces quite good agreement with the linear trend observed at low metallicities without fine tuning. We argue that reported discrepancies between theory and observations do not represent a nucleosynthetic problem, but instead are the consequences of inaccurate treatments of Galactic evolution.Comment: 26 pages, 5 figures, LaTeX. The Astrophysical Journal, in pres

    On the distance of the Magellanic Clouds using Cepheid NIR and optical-NIR Period Wesenheit Relations

    Full text link
    We present the largest near-infrared (NIR) data sets, JHKsJHKs, ever collected for classical Cepheids in the Magellanic Clouds (MCs). We selected fundamental (FU) and first overtone (FO) pulsators, and found 4150 (2571 FU, 1579 FO) Cepheids for Small Magellanic Cloud (SMC) and 3042 (1840 FU, 1202 FO) for Large Magellanic Cloud (LMC). Current sample is 2--3 times larger than any sample used in previous investigations with NIR photometry. We also discuss optical VIVI photometry from OGLE-III. NIR and optical--NIR Period-Wesenheit (PW) relations are linear over the entire period range (0.0<logPFU1.650.0<\log P_{\rm FU} \le1.65 ) and their slopes are, within the intrinsic dispersions, common between the MCs. These are consistent with recent results from pulsation models and observations suggesting that the PW relations are minimally affected by the metal content. The new FU and FO PW relations were calibrated using a sample of Galactic Cepheids with distances based on trigonometric parallaxes and Cepheid pulsation models. By using FU Cepheids we found a true distance moduli of 18.45±0.02(random)±0.10(systematic)18.45\pm0.02{\rm(random)}\pm0.10{\rm(systematic)} mag (LMC) and 18.93±0.02(random)±0.10(systematic)18.93\pm0.02{\rm(random)}\pm0.10{\rm(systematic)} mag (SMC). These estimates are the weighted mean over ten PW relations and the systematic errors account for uncertainties in the zero-point and in the reddening law. We found similar distances using FO Cepheids (18.60±0.03(random)±0.10(systematic)18.60\pm0.03{\rm(random)}\pm0.10{\rm(systematic)} mag [LMC] and 19.12±0.03(random)±0.10(systematic)19.12\pm0.03{\rm(random)}\pm0.10{\rm(systematic)} mag [SMC]). These new MC distances lead to the relative distance, Δμ=0.48±0.03\Delta\mu=0.48\pm0.03 mag (FU, logP=1\log P=1) and Δμ=0.52±0.03\Delta\mu=0.52\pm0.03 mag (FO, logP=0.5\log P=0.5),which agrees quite well with previous estimates based on robust distance indicators.Comment: 17 pages, 7 figure

    A Complexity Measure for Continuous Time Quantum Algorithms

    Get PDF
    We consider unitary dynamical evolutions on n qubits caused by time dependent pair-interaction Hamiltonians and show that the running time of a parallelized two-qubit gate network simulating the evolution is given by the time integral over the chromatic index of the interaction graph. This defines a complexity measure of continuous and discrete quantum algorithms which are in exact one-to-one correspondence. Furthermore we prove a lower bound on the growth of large-scale entanglement depending on the chromatic index.Comment: 6 pages, Revte

    On the metallicity distribution of classical Cepheids in the Galactic inner disk

    Get PDF
    We present homogeneous and accurate iron abundances for almost four dozen (47) of Galactic Cepheids using high-spectral resolution (R\sim40,000) high signal-to-noise ratio (S/N \ge 100) optical spectra collected with UVES at VLT. A significant fraction of the sample (32) is located in the inner disk (RG lele 6.9 kpc) and for half of them we provide new iron abundances. Current findings indicate a steady increase in iron abundance when approaching the innermost regions of the thin disk. The metallicity is super-solar and ranges from 0.2 dex for RG \sim 6.5 kpc to 0.4 dex for RG \sim 5.5 kpc. Moreover, we do not find evidence of correlation between iron abundance and distance from the Galactic plane. We collected similar data available in the literature and ended up with a sample of 420 Cepheids. Current data suggest that the mean metallicity and the metallicity dispersion in the four quadrants of the Galactic disk attain similar values. The first-second quadrants show a more extended metal-poor tail, while the third-fourth quadrants show a more extended metal-rich tail, but the bulk of the sample is at solar iron abundance. Finally, we found a significant difference between the iron abundance of Cepheids located close to the edge of the inner disk ([Fe/H]\sim0.4) and young stars located either along the Galactic bar or in the nuclear bulge ([Fe/H]\sim0). Thus suggesting that the above regions have had different chemical enrichment histories. The same outcome applies to the metallicity gradient of the Galactic bulge, since mounting empirical evidence indicates that the mean metallicity increases when moving from the outer to the inner bulge regions.Comment: 10 pages, 5 figures; Corrected typos, corrected Table

    Fragility of a class of highly entangled states of many quantum-bits

    Get PDF
    We consider a Quantum Computer with n quantum-bits (`qubits'), where each qubit is coupled independently to an environment affecting the state in a dephasing or depolarizing way. For mixed states we suggest a quantification for the property of showing {\it quantum} uncertainty on the macroscopic level. We illustrate in which sense a large parameter can be seen as an indicator for large entanglement and give hypersurfaces enclosing the set of separable states. Using methods of the classical theory of maximum likelihood estimation we prove that this parameter is decreasing with 1/\sqrt{n} for all those states which have been exposed to the environment. Furthermore we consider a Quantum Computer with perfect 1-qubit gates and 2-qubit gates with depolarizing error and show that any state which can be obtained from a separable initial state lies inbetween a family of pairs of certain hypersurfaces parallel to those enclosing the separable ones.Comment: 9 Pages, RevTe
    corecore