11 research outputs found

    What is the long-term clinical outcome after fragility fractures of the pelvis? - A CT-based cross-sectional study

    Get PDF
    Background: Recently, Rommens and Hoffman introduced a CT-based classification system for fragility fractures of the pelvis (FFP). Although fracture characteristics have been described, the relationship with clinical outcome is lacking. The purpose of this study was to get insight into the type of treatment and subsequent clinical outcome after all types of FFP. Methods: A cross-sectional cohort study was performed including all elderly patients (≥ 65 years) with a CT-diagnosed FFP, between 2007-2019 in two level 1 trauma centers. Data regarding treatment, mortality and clinical outcome was gathered from the electronic patient files. Patients were asked to complete patient-reported outcome measures (PROMs) regarding physical functioning (SMFA) and quality of life (EQ-5D). Additionally, a standardized multidisciplinary treatment algorithm was constructed. Results: A total of 187 patients were diagnosed with an FFP of whom 117 patients were available for follow-up analysis and 58 patients responded. FFP type I was most common (60%), followed by type II (27%), type III (8%) and type IV (5%). Almost all injuries were treated non-operatively (98%). Mobility at six weeks ranged from 50% (type III) to 80% type II). Mortality at 1 year was respectively 16% (type I and II), 47% (type III) and 13% (type IV). Physical functioning (SMFA function index) ranged from 62 (type III and IV) to 69 (type II) and was significantly decreased (P=<0.001) compared to the age-matched general population. Quality of life was also significantly decreased, ranging from 0.26 (type III) to 0.69 (type IV). Conclusions: FFP type I and II are most common. Treatment is mainly non-operative, resulting in good mobility after six weeks, especially for patients with FFP type I and II. Mortality rates at one year were substantial in all patients. Physical functioning and quality of life was about 20-30% decreased compared to the general population

    The combined effect of two mutations that alter serially homologous color pattern elements on the fore and hindwings of a butterfly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability for serially homologous structures to acquire a separate identity has been primarily investigated for structures dependent on Hox gene input but is still incompletely understood in other systems. The fore and hindwings of butterflies are serially homologous structures as are the serially homologous eyespots that can decorate each of these wings. Eyespots can vary in number between fore and hindwings of the same individual and mutations of large effect can control the total number of eyespots that each of the wings displays. Here we investigate the genetics of a new spontaneous color pattern mutation, <it>Missing</it>, that alters eyespot number in the nymphalid butterfly, <it>Bicyclus anynana</it>. We further test the interaction of <it>Missing </it>with a previously described mutation, <it>Spotty</it>, describe the developmental stage affected by <it>Missing</it>, and test whether <it>Missing </it>is a mutant variant of the gene <it>Distal-less </it>via a linkage association study.</p> <p>Results</p> <p><it>Missing </it>removes or greatly reduces the size of two of the hindwing eyespots from the row of seven eyespots, with no detectable effect on the rest of the wing pattern. Offspring carrying a single <it>Missing </it>allele display intermediate sized eyespots at these positions. <it>Spotty </it>has the opposite effect of <it>Missing</it>, i.e., it introduces two extra eyespots in homologous wing positions to those affected by <it>Missing</it>, but on the forewing. When <it>Missing </it>is combined with <it>Spotty </it>the size of the two forewing eyespots decreases but the size of the hindwing spots stays the same, suggesting that these two mutations have a combined effect on the forewing such that <it>Missing </it>reduces eyespot size when in the presence of a <it>Spotty </it>mutant allele, but that <it>Spotty </it>has no effect on the hindwing. <it>Missing </it>prevents the complete differentiation of two of the eyespot foci on the hindwing. We found no evidence for any linkage between the <it>Distal-less </it>and <it>Missing </it>genes.</p> <p>Conclusion</p> <p>The spontaneous mutation <it>Missing </it>controls the differentiation of the signaling centers of a subset of the serial homologous eyespots present on both the fore and the hindwing in a dose-dependent fashion. The effect of <it>Missing </it>on the forewing, however, is only observed when the mutation <it>Spotty </it>introduces additional eyespots on this wing. <it>Spotty</it>, on the other hand, controls the differentiation of eyespot centers only on the forewing. <it>Spotty</it>, unlike <it>Missing</it>, may be under Ubx gene regulation, since it affects a subset of eyespots on only one of the serially homologous wings.</p

    The role of volatile semiochemicals in mediating host location and selection by nuisance and disease-transmitting cattle flies

    No full text
    The role of volatile semiochemicals in mediating the location and selection within herds of Holstein-Friesian heifers by nuisance and disease-transmitting cattle flies was investigated using coupled gas chromatography-electrophysiology (GC-EAG), coupled gas chromatography-mass spectrometry (GC-MS), electrophysiology (EAG), laboratory behaviour and field studies. Using volatile extracts collected by air entrainment from heifers in the Netherlands, a number of active peaks were located by coupled GC-EAG for Musca autumnalis (de Geer) (Diptera: Muscidae) and Haematobia irritans (L.) (Diptera: Muscidae). Volatile samples were also collected from two heifers in Denmark shown in previous counting experiments to differ significantly in their fly loads. Coupled GC-EAG using Ha. irritans antennae revealed differences in the EAG response to the samples, with additional EAG activity in the sample collected from the heifer with the lower fly load. To identify more EAG active compounds, volatiles were also collected from 48-h-old urine by air entrainment. In total, 23 compounds were located and identified by coupled GC-EAG and GC-MS. Further electrophysiological testing of these compounds with five fly species [M. autumnalis, Ha. irritans, Hydrotaea irritans (L.) (Diptera: Muscidae), Stomoxys calcitrans (L.) (Diptera: Musicidae) and Wohlfahrtia magnifica (Schiner) (Diptera: Sarcophagidae)] showed that only some of the compounds were physiologically active across the range of flies tested. These included 1-octen-3-ol, 6-methyl-5-hepten-2-one, (Z)-3-hexen-1-ol, naphthalene, and all EAG active compounds identified from urine. Compounds showing significant EAG activity were tested for behavioural activity using a wind-tunnel designed for measuring upwind night behaviour. At certain concentrations, 1-octen-3-ol, 6-methyl-5-hepten-2-one and 3-octanol increased upwind flight, whereas naphthalene, propyl butanoate and linalool reduced upwind flight. In field studies using small herds of heifers ranked according to their fly load, individual slow-release formulations of 1-octen-3-ol and 6-methyl-5-hepten-2-one, when applied to low and high fly loading heifers, reduced fly loads on these individuals. This study provides evidence for the hypothesis that the natural differential attractiveness within herds of Holstein-Freisian heifers, i.e. a single host species, for cattle flies is partly due to differences in volatile semiochemicals emitted from the host. It is suggested that this phenomenon applies to other vertebrate host species and their associated insect pests
    corecore