12,639 research outputs found
Extended Coronal Emission Lines in Active Galactic Nuclei
VLT and NTT spectra are used to examine the nuclear and extended coronal line
emission in a sample of well-known Seyfert 1 and 2 galaxies. The excellent
spatial resolution obtained with VLT allowed us to map [SiVI] 1.963 m and
[SiVII] 2.48 m on scales of up to 20 pc. Coronal line emission, extended
to distances of 100 pc, is detected in some of the lines analyzed,
particularly in [FeX] 6374\AA, [FeXI] 7891\AA, and [SiVII] 2.48m. Most
coronal lines are strongly asymmetric towards the blue and broader than
low-ionization lines. This result is particularly important for Circinus, where
previous observations had failed at detecting larger widths for high-ionization
lines. Photoionization models are used to investigate the physical conditions
and continuum luminosities necessary to produced the observed coronal emission.
We found that an ionization parameter U> 0.10 is necessary to reproduce the
observations, although the clouds should be located at distances < 30 pc.Comment: 4 pages, 6 figures, to appear in proceedings of IAU Symposium No.
222, The Interplay Among Black Holes, Stars and ISM in Galacti Nucle
The central parsecs of active galactic nuclei: challenges to the torus
Type 2 AGN are by definition nuclei in which the broad-line region and
continuum light are hidden at optical/UV wavelengths by dust. Via accurate
registration of infrared (IR) Very Large Telescope adaptive optics images with
optical \textit{Hubble Space Telescope} images we unambiguously identify the
precise location of the nucleus of a sample of nearby, type 2 AGN. Dust
extinction maps of the central few kpc of these galaxies are constructed from
optical-IR colour images, which allow tracing the dust morphology at scales of
few pc. In almost all cases, the IR nucleus is shifted by several tens of pc
from the optical peak and its location is behind a dust filament, prompting to
this being a major, if not the only, cause of the nucleus obscuration. These
nuclear dust lanes have extinctions mag, sufficient to at least
hide the low-luminosity AGN class, and in some cases are observed to connect
with kpc-scale dust structures, suggesting that these are the nuclear fueling
channels. A precise location of the ionised gas H and
[\textsc{Si\,vii}] 2.48 m coronal emission lines relative to those of the
IR nucleus and dust is determined. The H peak emission is often shifted
from the nucleus location and its sometimes conical morphology appears not to
be caused by a nuclear --torus-- collimation but to be strictly defined by the
morphology of the nuclear dust lanes. Conversely, [\textsc{Si\,vii}] 2.48
m emission, less subjected to dust extinction, reflects the truly, rather
isotropic, distribution of the ionised gas. All together, the precise location
of the dust, ionised gas and nucleus is found compelling enough to cast doubts
on the universality of the pc-scale torus and supports its vanishing in
low-luminosity AGN. Finally, we provide the most accurate position of the NGC
1068 nucleus, located at the South vertex of cloud B.Comment: 23 pages, 10 figures, accepted for publication in MNRA
Near-infrared spectroscopy of nearby Seyfert galaxies - II. Molecular content and coronal emission
We present sub-arcsec near-infrared 1.5 - 2.5 micron moderate resolution
long-slit spectra of eight nearby Seyfert galaxies (z<0.01), both parallel to
the ionization cone and perpendicular to it. These spectra complement similar
data on six Seyferts, presented in Reunanen, Kotilainen & Prieto (2002). Large
concentrations of molecular gas (H2) are present in the nucleus regardless of
the Seyfert type. The spatial extent of the H2 emission is larger perpendicular
to the cone than parallel to it in 6/8 (75 %) galaxies, in agreement with the
unified models of Active Galactic Nuclei. Broad BrGamma was detected in nearly
half of the optically classified Seyfert 2 galaxies, including two objects with
no evidence for hidden polarized Broad Line Region. Nuclear [FeII] emission is
generally blueshifted which together with high BrGamma/[FeII] ratios suggests
shocks as the dominant excitation mechanism in Seyfert galaxies. Bright coronal
emission lines [SiVI] and [SiVII] are common in Seyferts, as they are detected
in ~60 % of the galaxies. In three galaxies the coronal lines are extended only
in the direction parallel to the cone. This could be explained by shock
excitation due to the jet or superwind interacting with the interstellar
medium.Comment: 19 pages, accepted for publication in MNRA
Optical Surface Photometry of a Sample of Disk Galaxies. II Structural Components
This work presents the structural decomposition of a sample of 11 disk
galaxies, which span a range of different morphological types. The U, B, V, R,
and I photometric information given in Paper I (color and color-index images
and luminosity, ellipticity, and position-angle profiles) has been used to
decide what types of components form the galaxies before carrying out the
decomposition. We find and model such components as bulges, disks, bars, lenses
and rings.Comment: 14 figures. Accepted for publication in A&
Chemical Abundances from the Continuum
The calculation of solar absolute fluxes in the near-UV is revisited,
discussing in some detail recent updates in theoretical calculations of
bound-free opacity from metals. Modest changes in the abundances of elements
such as Mg and the iron-peak elements have a significant impact on the
atmospheric structure, and therefore self-consistent calculations are
necessary. With small adjustments to the solar photospheric composition, we are
able to reproduce fairly well the observed solar fluxes between 200 and 270 nm,
and between 300 and 420 nm, but find too much absorption in the 270-290 nm
window. A comparison between our reference 1D model and a 3D time-dependent
hydrodynamical simulation indicates that the continuum flux is only weakly
sensitive to 3D effects, with corrections reaching <10% in the near-UV, and <2%
in the optical.Comment: 10 pages, 5 figures, to appear in the proceedings of the conference A
Stellar Journey, a symposium in celebration of Bengt Gustafsson's 65th
birthday, June 23-27, 2008, Uppsal
Time-resolved infrared emission from radiation-driven central obscuring structures in Active Galactic Nuclei
The central engines of Seyfert galaxies are thought to be enshrouded by
geometrically thick gas and dust structures. In this article, we derive
observable properties for a self-consistent model of such toroidal gas and dust
distributions, where the geometrical thickness is achieved and maintained with
the help of X-ray heating and radiation pressure due to the central engine.
Spectral energy distributions (SEDs) and images are obtained with the help of
dust continuum radiative transfer calculations with RADMC-3D. For the first
time, we are able to present time-resolved SEDs and images for a physical model
of the central obscurer. Temporal changes are mostly visible at shorter
wavelengths, close to the combined peak of the dust opacity as well as the
central source spectrum and are caused by variations in the column densities of
the generated outflow. Due to the three-component morphology of the
hydrodynamical models -- a thin disc with high density filaments, a surrounding
fluffy component (the obscurer) and a low density outflow along the rotation
axis -- we find dramatic differences depending on wavelength: whereas the
mid-infrared images are dominated by the elongated appearance of the outflow
cone, the long wavelength emission is mainly given by the cold and dense disc
component. Overall, we find good agreement with observed characteristics,
especially for those models, which show clear outflow cones in combination with
a geometrically thick distribution of gas and dust, as well as a geometrically
thin, but high column density disc in the equatorial plane.Comment: 16 pages, 12 figures, accepted for publication in MNRA
- …