1,584 research outputs found

    Molecular access to multi-dimensionally encoded information

    Get PDF
    Polymer scientist have only recently realized that information storage on the molecular level is not only restricted to DNA-based systems. Similar encoding and decoding of data have been demonstrated on synthetic polymers that could overcome some of the drawbacks associated with DNA, such as the ability to make use of a larger monomer alphabet. This feature article describes some of the recent data storage strategies that were investigated, ranging from writing information on linear sequence-defined macromolecules up to layer-by-layer casted surfaces and QR codes. In addition, some strategies to increase storage density are elaborated and some trends regarding future perspectives on molecular data storage from the literature are critically evaluated. This work ends with highlighting the demand for new strategies setting up reliable solutions for future data management technologies

    Self-assembling linear and star shaped poly (ε-caprolactone)/poly[(meth)acrylic acid] block copolymers as carriers of indomethacin and quercetin

    Get PDF
    A amphiphilic linear AB, BAB, and star shaped (AB)(3) block copolymers of poly(E-caprolactone) (PCL)/poly(meth)acrylic acid (P(M)AA) are used for the preparation of nanoparticles and drug entrapment, where indomethacin and quercetin are employed as model drugs. Drug loading experiments with the nanoparticles based on PAA block copolymers demonstrate a higher efficiency for the star structure, whereas the PMAA star copolymer presents the lowest entrapment ability. The release properties are studied at room temperature and 37 degrees C in phosphate buffer solutions with pH equal to 5 and 7.4. The kinetic profiles show a strong relation to the copolymer's topology, indicating the lowest release rates from the star based superstructures, while the PMAA particles are less stable than those containing PAA segment(s)

    Dynamic covalent chemistry in polymer networks : a mechanistic perspective

    Get PDF
    The incorporation of dynamic covalent linkages within and between polymer chains brings new properties to classical thermosetting polymer formulations, in particular in terms of thermal responses, processing options and intrinsic recycling abilities. Thus, in recent years, there has been a rapidly growing interest in the design and synthesis of monomers and cross-linkers that can be used as robust but at the same time reactive organic building blocks for dynamic polymer networks. In this perspective, a selection of such chemistries is highlighted, with a particular focus on the reaction mechanisms of molecular network rearrangements, and on how various mechanistic profiles can be related to the mechanical and physicochemical properties of polymer materials, in particular in relation with vitrimers, the recently defined third category of polymer materials. The recent advances in this area are not only expected to help direct promising emerging polymer applications, but also point towards the need for a better fundamental understanding of chemical reactivity within a macromolecular context

    Controlling thermal reactivity with different colors of light

    Get PDF
    The ability to switch between thermally and photochemically activated reaction channels with an external stimulus constitutes a key frontier within the realm of chemical reaction control. Here, we demonstrate that the reactivity of triazolinediones, powerful coupling agents in biomedical and polymer research, can be effectively modulated by an external photonic field. Specifically, we show that their visible light-induced photopolymerization leads to a quantitative photodeactivation, thereby providing a well-defined off-switch of their thermal reactivity. Based on this photodeactivation, we pioneer a reaction manifold using light as a gate to switch between a UV-induced Diels-Alder reaction with photocaged dienes and a thermal addition reaction with alkenes. Critically, the modulation of the reactivity by light is reversible and the individually addressable reaction pathways can be repeatedly accessed. Our approach thus enables a step change in photochemically controlled reactivity, not only in small molecule ligations, yet importantly in controlled surface and photoresist design

    Peru or Park City

    Get PDF

    Poly(thioether) vitrimers via transalkylation of trialkylsulfonium salts

    Get PDF
    Vitrimers are permanently cross-linked organic polymers that can be reshaped, molded, and recycled without loss of network integrity. Herein, we report poly(thioether) networks, prepared through a straightforward thiol-ene photopolymerization, that can be turned into catalyst-free vitrimer materials by partial alkylation of the thioethers (1-10%) to the corresponding trialkylsulfonium salts. Based on a classical S(N)2-type substitution, the resulting polyionic networks can be reshaped upon heating via swift transalkylation reactions. This novel exchange reaction for the design of vitrimers was studied both on low MW model compounds as well as on a material level. In addition, we demonstrated the recycling of these networks without significant loss of mechanical properties
    corecore