3 research outputs found

    Mass transfer and hydrodynamic characteristics of new carbon carbon packing: Application to CO2 post-combustion capture

    Get PDF
    A novel structured packing, the 4D packing, has been characterized in terms of hydrodynamics, effective area and gas side mass transfer coefficient. The increase of the 4D opening fraction allows to reduce pressure drop and to get a better capacity than Mellapak 500Y and 750Y, for which the geometric areas are similar. The 50% open 4D packing, 4D-50%, leads to effective areas which are higher than Mellapak 500Y ones, and doubled compared with Mellapak Plus 252Y ones. Effective areas for the 4D do not decrease when the opening fraction increases from 30 to 50%, this indicates that a non-negligible amount of droplets is generated at 50%. Gas side mass transfer coefficient had been measured with an original experimental method: water evaporation. Corresponding results seem to be in agreement with the literature, and with the fact that a large amount of droplets is generated. Correlations are proposed for both effective area and gas side mass transfer coefficient for the 4D-50%.The 4D-50% packing could be very interesting for post-combustion CO2 capture since it generates low pressure drop and a very high interfacial area. This will be further confirmed by an economic study for which the absorber plant will be designed with a rate based model

    Performance characteristics of a new structured packing

    Get PDF
    A new structured packing using carbon fibres, called Sepcarb® 4D, is presented. This packing has several attractive properties, such as high voidage (ε=94%) and high effective area (a=420 m2 m−3). These properties are advantageous for packing used as a gas–liquid contactor for separation units. To determine the internal characteristics of this packing, we performed several experiments using a 150-mm-internal-diameter column. Firstly, hydrodynamics experiments were conducted using an air–water counter current flow to determine the pressure drop (for both dry and wet packing) and flooding point. Secondly, the mass transfer efficiency was determined in terms of HETP (height equivalent to theoretical plate) by total reflux experiments with an n-heptane/cyclohexane mixture at atmospheric pressure. Hydrodynamic performance and mass transfer efficiency were compared with those of packings generally used in distillation and absorption
    corecore