8 research outputs found

    Limits on a gravitational field dependence of the proton-electron mass ratio from H2 in white dwarf stars.

    Get PDF
    Spectra of molecular hydrogen (H2) are employed to search for a possible proton-to-electron mass ratio (μ) dependence on gravity. The Lyman transitions of H2, observed with the Hubble Space Telescope towards white dwarf stars that underwent a gravitational collapse, are compared to accurate laboratory spectra taking into account the high temperature conditions (T∼13 000  K) of their photospheres. We derive sensitivity coefficients Ki which define how the individual H2 transitions shift due to μ dependence. The spectrum of white dwarf star GD133 yields a Δμ/μ constraint of (-2.7±4.7stat±0.2syst)×10(-5) for a local environment of a gravitational potential ϕ∼10(4) ϕEarth, while that of G29-38 yields Δμ/μ=(-5.8±3.8stat±0.3syst)×10(-5) for a potential of 2×10(4) ϕEarth.This work was supported by the FOM-Program \Bro- ken Mirrors & Drifting Constant", Science and Technol- ogy Facilities Council, Templeton Foundation and Aus- tralian Research Council (DP110100866).This is the accepted manuscript. The final version is available from APS at http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.123002

    Fundamental Physics from Observations of White Dwarf Stars

    Get PDF
    Variation in fundamental constants provide an important test of theories of grand unification. Potentially, white dwarf spectra allow us to directly observe variation in fundamental constants at locations of high gravitational potential. We study hot, metal polluted white dwarf stars, combining far-UV spectroscopic observations, atomic physics, atmospheric modelling and fundamental physics, in the search for variation in the fine structure constant. This registers as small but measurable shifts in the observed wavelengths of highly ionized Fe and Ni lines when compared to laboratory wavelengths. Measurements of these shifts were performed by Berengut et al (2013) using high-resolution STIS spectra of G191-B2B, demonstrating the validity of the method. We have extended this work by; (a) using new (high precision) laboratory wavelengths, (b) refining the analysis methodology (incorporating robust techniques from previous studies towards quasars), and (c) enlarging the sample of white dwarf spectra. A successful detection would be the first direct measurement of a gravitational field effect on a bare constant of nature. We describe our approach and present preliminary results.Leverhulme Trus

    Constraining the magnetic field on white dwarf surfaces; Zeeman effects and fine structure constant variation

    Full text link
    ABSTRACT White dwarf (WD) atmospheres are subjected to gravitational potentials around 105 times larger than occur on Earth. They provide a unique environment in which to search for any possible variation in fundamental physics in the presence of strong gravitational fields. However, a sufficiently strong magnetic field will alter absorption line profiles and introduce additional uncertainties in measurements of the fine structure constant. Estimating the magnetic field strength is thus essential in this context. Here, we model the absorption profiles of a large number of atomic transitions in the WD photosphere, including first-order Zeeman effects in the line profiles, varying the magnetic field as a free parameter. We apply the method to a high signal-to-noise, high-resolution, far-ultraviolet Hubble Space Telescope/Space Telescope Imaging Spectrograph spectrum of the WD G191−B2B. The method yields a sensitive upper limit on its magnetic field of B &amp;lt; 2300 G at the 3σ level. Using this upper limit, we find that the potential impact of quadratic Zeeman shifts on measurements of the fine structure constant in G191−B2B is 4 orders of magnitude below laboratory wavelength uncertainties.</jats:p

    Dielectronic recombination of lanthanide and low ionization state tungsten ions: W-1(3+)-W1+

    Get PDF
    The experimental thermonuclear reactor, ITER, is currently being constructed in Cadarache, France. The reactor vessel will be constructed with a beryllium coated wall, and a tungsten coated divertor. As a plasma-facing component, the divertor will be under conditions of extreme temperature, resulting in the sputtering of tungsten impurities into the main body plasma. Modelling and understanding the potential cooling effects of these impurities requires detailed collisional-radiative modelling. These models require a wealth of atomic data for the various atomic species in the plasma. In particular, partial, final-state resolved dielectronic/radiative recombination (DR/RR) rate coefficients for tungsten are required. In this manuscript, we present our calculations of detailed DR/RR rate coefficients for the lanthanide-like, and low ionization stages of tungsten, spanning charge states W13+–W1+. The calculations presented here constitutes the first detailed exploration of such low ionization state tungsten ions. We are able to reproduce the general trend of calculations performed by other authors, but find significant differences between ours and their DR rate coefficients, especially at the lowest temperatures considered

    A far-UV survey of three hot, metal-polluted white dwarf stars: WD0455-282, WD0621-376, and WD2211-495

    Full text link
    Using newly obtained high-resolution data (R ∼ 1 × 10^5) from the Hubble Space Telescope, and archival UV data from the Far Ultraviolet Spectroscopic Explorer, we have conducted a detailed UV survey of the three hot, metal-polluted white dwarfs WD0455−282, WD0621−376, and WD2211−495. Using bespoke model atmospheres, we measured Teff, log g, and photospheric abundances for these stars. In conjunction with data from Gaia, we measured masses, radii, and gravitational redshift velocities for our sample of objects. We compared the measured photospheric abundances with those predicted by radiative levitation theory, and found that the observed Si abundances in all three white dwarfs, and the observed Fe abundances in WD0621−376 and WD2211−495, were larger than those predicted by an order of magnitude. These findings imply not only an external origin for the metals, but also ongoing accretion, as the metals not supported by radiative levitation would sink on extremely short time-scales. We measured the radial velocities of several absorption features along the line of sight to the three objects in our sample, allowing us to determine the velocities of the photospheric and interstellar components along the line of sight for each star. Interestingly, we made detections of circumstellar absorption along the line of sight to WD0455−282 with three velocity components. To our knowledge, this is the first such detection of multicomponent circumstellar absorption along the line of sight to a white dwarf

    Measuring the fine-structure constant on a white dwarf surface; a detailed analysis of Fe V absorption in G191-B2B

    Full text link
    The gravitational potential φ = GM/Rc2 at the surface of the white dwarf G191-B2B is 10,000 times stronger than that at the Earth’s surface. Numerous photospheric absorption features are detected, making this a suitable environment to test theories in which the fundamental constants depend on gravity. We have measured the fine structure constant, α, at the white dwarf surface, used a newly calibrated Hubble Space Telescope STIS spectrum of G191-B2B, two new independent sets of laboratory Fe V wavelengths, and new atomic calculations of the sensitivity parameters that quantify Fe V wavelength dependency on α. The two results obtained are: Δα/α0 = (6.36 ± 0.35stat ± 1.84sys) × 10−5 and Δα/α0 = (4.21 ± 0.48stat ± 2.25sys) × 10−5. The measurements hint that the fine structure constant increases slightly in the presence of strong gravitational fields. A comprehensive search for systematic errors is summarised, including possible effects from line misidentifications, line blending, stratification of the white dwarf atmosphere, the quadratic Zeeman effect and electric field effects, photospheric velocity flows, long-range wavelength distortions in the HST spectrum, and variations in the relative Fe isotopic abundances. None fully account for the observed deviation but the systematic uncertainties are heavily dominated by laboratory wavelength measurement precision

    Multi-wavelength observations of the EUV variable metal-rich white dwarf GD 394

    Get PDF
    We present new Hubble Space Telescope (HST) ultraviolet and ground-based optical observations of the hot, metal-rich white dwarf GD 394. Extreme-ultraviolet (EUV) observations in 1992-1996 revealed a 1.15d periodicity with a 25 percent amplitude, hypothesised to be due to metals in a surface accretion spot. We obtained phase-resolved HST/Space Telescope Imaging Spectrograph (STIS) high-resolution far-ultraviolet (FUV) spectra of GD 394 that sample the entire period, along with a large body of supplementary data. We find no evidence for an accretion spot, with the flux, accretion rate and radial velocity of GD 394 constant over the observed timescales at ultraviolet and optical wavelengths. We speculate that the spot may have no longer been present when our observations were obtained, or that the EUV variability is being caused by an otherwise undetected evaporating planet. The atmospheric parameters obtained from separate fits to optical and ultraviolet spectra are inconsistent, as is found for multiple hot white dwarfs. We also detect non-photospheric, high-excitation absorption lines of multiple volatile elements, which could be evidence for a hot plasma cocoon surrounding the white dwarf
    corecore