7 research outputs found

    Commercial scale production of Yamabushitake mushroom (Hericium erinaceus (Bull.) Pers. 1797) using rubber and bamboo sawdust substrates in tropical regions

    No full text
    Abstract Yamabushitake (Hericium erinaceus) is one of the most sought out mushrooms that is widely used for both direct consumption and medicinal purposes. While its demand increases worldwide, cultivation of the mushroom is limited to temperate areas and its production in tropical regions has never been explored. The aim of this study was to test the utilization of rubber and bamboo sawdust, alone or as a substrate mixture, for industrial scale Yamabushitake mushroom production. Five substrate treatments with various ratios of the two sawdust were compared for their physicochemical properties in relation to mushroom productivity. The highest mushroom fresh and dry (113.22 and 23.25 g, respectively), biological efficiency (42.61%), and cap size (9.53 cm) were obtained from the substrates containing 100% rubber sawdust, with the mushroom yield decreasing proportional to the ratio of bamboo sawdust. The 100% rubber sawdust substrate provided a higher initial organic matter and carbon content together with C:N ratio at 63.2%, 36.7% and 65.48, respectively, whereas the 100% bamboo sawdust provided higher nitrogen content (1.03%), which was associated with lower mushroom yield but higher number of fruiting bodies. As in the 100% rubber sawdust substrate, a comparable mushroom yield and growth attributes were also obtained in the 3:1 rubber-bamboo sawdust mixture substrate. Principle component analysis of the measured variables indicated a strong influence of substrate C:N ratio before spawning and the change in substrate electrical conductivity and N content after cultivation to the variation in mushroom productivity among the treatments. The results demonstrate the applicability of rubber sawdust and its combination with up to 25% of bamboo sawdust for Yamabushitake mushroom cultivation and provide the basis for substrate optimization in the tropical Yamabushitake mushroom industry through a circular economy framework

    The Effects of Shading and Nutrient Management on Yield Quality of Vegetable Fern

    No full text
    This study investigated the optimization of shading and organic fertilizer applications on vegetable fern growth and yield quality in order to develop guidelines for farmers interested in sustainable vegetable fern production. The experiment was conducted in a split-plot design in RCBD with four replications. There were three main plots; no shading, 75% shading, and 96% shading. The five sub-plots consisted of no fertilizer application (control), chemical fertilizer at a rate of 92.80 kg N ha−1, and cow manure at rates of 92.80, 185.60, and 278.40 kg N ha−1. A comparison between different shading and fertilizer treatments, combined, demonstrated that 75% shading with the application of cow manure at the rate of 185.60 kg N ha−1 was the most appropriate management for vegetable fern production, with the highest marketable yield recorded (1128.54 kg ha−1 month−1) and a 10-fold yield increase compared to the control (no shading and no fertilizer). This treatment also resulted in good yield quality (crunchy and tender), high concentrations of chlorophyll and vitamin C, and a safe amount of nitrate accumulation for consumers

    Efficacy of Agricultural and Food Wastes as the Growing Media for Sunflower and Water Spinach Microgreens Production

    No full text
    The growing media is one of the significant elements affecting microgreens’ yield and quality. This experiment investigated the possibility of waste utilization instead of employing peat moss to produce sunflower and water-spinach microgreens. The treatments consisted of peat moss (Control), coconut coir dust (CD), leaf compost (LC), food waste compost (FC), CD:LC = 1:1 v/v, CD:FC = 1:1 v/v, LC:FC = 1:1 v/v, and CD:LC:FC = 1:1:1 v/v. The results proved that the highest yield of sunflower microgreens was observed when cultivated in 1:1 v/v of CD:LC media (10,114.81 g m−2), whereas the highest yield of water spinach microgreens was recorded under the treatments of CD, Control, 1:1 v/v of CD:LC, and 1:1:1 v/v of CD:LC:FC media (10,966.67–9800.00 g m−2). The biochemical composition of the microgreens varied within the types. Our findings demonstrated that a tendency of an increase in chlorophyll and carotenoid contents depended on the growth of both microgreens under different growing media. All growing media did not cause excess nitrate residue or pathogenic contamination in both microgreens, namely Clostridium perfringens, Salmonella spp., and Staphylococcus aureus. In contrast, almost all the growing media resulted in a higher population of Bacillus cereus contamination in both microgreens than the standard set limit, except for sunflower microgreens grown in the control and CD growing media. These findings could suggest that the 1:1 v/v of CD:LC and CD media were the most effective growing media for sunflower and water spinach microgreens, respectively, but further cleaning before consumption is recommended to avoid or reduce the foodborne incidences caused by B. cereus in microgreens

    The Effects of Soybean Meal on Growth, Bioactive Compounds, and Antioxidant Activity of <i>Hericium erinaceus</i>

    No full text
    Hericium erinaceus (Bull.:Fr) Pers. is a medicinal mushroom that has various health benefits and is a rich source of bioactive compounds and antioxidant activity. In recent years, H. erinaceus has been considered for its many medicinal properties and is widely consumed in Asian countries. Remarkably, the effect of mushroom cultivation using substrates composed of soybean meal by-products on growth, as well as the enhancement of bioactive compounds and antioxidant activity, was evaluated. Our results confirmed that using soybean meal-produced H. erinaceus displayed a higher mycelial growth and biological efficiency than the control treatment. Bioactive compounds with triterpenoid content and total phenolic content of H. erinaceus grown on soybean meal contained the highest values at 56.78–69.15 mg Urs/g DW and 15.52–16.07 mg GAE/g DW, respectively, while H. erinaceus grown on the control treatment had the lowest value at 32.15 mg Urs/g DW and 7.75 mg GAE/g DW, respectively. In addition, H. erinaceus cultivated on soybean meal had higher DPPH activities than those grown on the control treatment, with IC50 values of 0.67–0.89 and 1.08 mg/mL, respectively. Therefore, this study provided baseline information on the potential role of soybean meal by-product substrates in H. erinaceus growth and their effect on bioactive compounds and antioxidant activity
    corecore