159 research outputs found

    Hexatic phase and water-like anomalies in a two-dimensional fluid of particles with a weakly softened core

    Full text link
    We study a two-dimensional fluid of particles interacting through a spherically-symmetric and marginally soft two-body repulsion. This model can exist in three different crystal phases, one of them with square symmetry and the other two triangular. We show that, while the triangular solids first melt into a hexatic fluid, the square solid is directly transformed on heating into an isotropic fluid through a first-order transition, with no intermediate tetratic phase. In the low-pressure triangular and square crystals melting is reentrant provided the temperature is not too low, but without the necessity of two competing nearest-neighbor distances over a range of pressures. A whole spectrum of water-like fluid anomalies completes the picture for this model potential.Comment: 26 pages, 14 figures; printed article available at http://link.aip.org/link/?jcp/137/10450

    Phase diagram of softly repulsive systems: The Gaussian and inverse-power-law potentials

    Full text link
    We redraw, using state-of-the-art methods for free-energy calculations, the phase diagrams of two reference models for the liquid state: the Gaussian and inverse-power-law repulsive potentials. Notwithstanding the different behavior of the two potentials for vanishing interparticle distances, their thermodynamic properties are similar in a range of densities and temperatures, being ruled by the competition between the body-centered-cubic (BCC) and face-centered-cubic (FCC) crystalline structures and the fluid phase. We confirm the existence of a reentrant BCC phase in the phase diagram of the Gaussian-core model, just above the triple point. We also trace the BCC-FCC coexistence line of the inverse-power-law model as a function of the power exponent nn and relate the common features in the phase diagrams of such systems to the softness degree of the interaction.Comment: 22 pages, 8 figure
    • …
    corecore