4 research outputs found

    Insights into the high-energy γ-ray emission of Markarian 501 from extensive multifrequency observations in the Fermi era

    Get PDF
    We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size ≲0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (≃1044 erg s-1) constitutes only a small fraction (∼10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. © 2011. The American Astronomical Society

    MAGIC very large zenith angle observations of the Crab Nebula up to 100 TeV

    Get PDF
    Aims. We measure the Crab Nebula γ-ray spectral energy distribution in the ~100 TeV energy domain and test the validity of existing leptonic emission models at these high energies. Methods. We used the novel very large zenith angle observations with the MAGIC telescope system to increase the collection area above 10 TeV. We also developed an auxiliary procedure of monitoring atmospheric transmission in order to assure proper calibration of the accumulated data. This employs recording optical images of the stellar field next to the source position, which provides a better than 10% accuracy for the transmission measurements. Results. We demonstrate that MAGIC very large zenith angle observations yield a collection area larger than a square kilometer. In only ~ 56 h of observations, we detect the γ-ray emission from the Crab Nebula up to 100 TeV, thus providing the highest energy measurement of this source to date with Imaging Atmospheric Cherenkov Telescopes. Comparing accumulated and archival MAGIC and Fermi/LAT data with some of the existing emission models, we find that none of them provides an accurate description of the 1 GeV to 100 TeV γ-ray signal

    Observation of inverse Compton emission from a long γ-ray burst

    No full text
    Long-duration γ-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectronvolt-to-megaelectronvolt band, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission1,2. Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands1–6. The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock7–9. Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C10,11. Here we report multi-frequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 × 10−6 to 1012 electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs

    Unraveling the Complex Behavior of Mrk 421 with Simultaneous X-Ray and VHE Observations during an Extreme Flaring Activity in 2013 April

    No full text
    © 2020. The American Astronomical Society. All rights reserved. We report on a multiband variability and correlation study of the TeV blazar Mrk 421 during an exceptional flaring activity observed from 2013 April 11 to 19. The study uses, among others, data from GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT), Swift, Nuclear Spectroscopic Telescope Array (NuSTAR), Fermi Large Area Telescope, Very Energetic Radiation Imaging Telescope Array System (VERITAS), and Major Atmospheric Gamma Imaging Cherenkov (MAGIC). The large blazar activity and the 43 hr of simultaneous NuSTAR and MAGIC/VERITAS observations permitted variability studies on 15 minute time bins over three X-ray bands (3-7 keV, 7-30 keV, and 30-80 keV) and three very-high-energy (VHE; >0.1 TeV) gamma-ray bands (0.2-0.4 TeV, 0.4-0.8 TeV, and >0.8 TeV). We detected substantial flux variations on multi-hour and sub-hour timescales in all of the X-ray and VHE gamma-ray bands. The characteristics of the sub-hour flux variations are essentially energy independent, while the multi-hour flux variations can have a strong dependence on the energy of the X-rays and the VHE gamma-rays. The three VHE bands and the three X-ray bands are positively correlated with no time lag, but the strength and characteristics of the correlation change substantially over time and across energy bands. Our findings favor multi-zone scenarios for explaining the achromatic/chromatic variability of the fast/slow components of the light curves, as well as the changes in the flux-flux correlation on day-long timescales. We interpret these results within a magnetic reconnection scenario, where the multi-hour flux variations are dominated by the combined emission from various plasmoids of different sizes and velocities, while the sub-hour flux variations are dominated by the emission from a single small plasmoid moving across the magnetic reconnection layer
    corecore