10,285 research outputs found
Liquid compressibility effects during the collapse of a single cavitating bubble
The effect of liquid compressibility on the dynamics of a single, spherical cavitating bubble is studied.
While it is known that compressibility damps the amplitude of bubble rebounds, the extent to which
this effect is accurately captured by weakly compressible versions of the Rayleigh–Plesset equation is
unclear. To clarify this issue, partial differential equations governing conservation of mass, momentum,
and energy are numerically solved both inside the bubble and in the surrounding compressible
liquid. Radiated pressure waves originating at the unsteady bubble interface are directly captured.
Results obtained with Rayleigh–Plesset type equations accounting for compressibility effects, proposed
by Keller and Miksis [J. Acoust. Soc. Am. 68, 628–633 (1980)], Gilmore, and Tomita and
Shima [Bull. JSME 20, 1453–1460 (1977)], are compared with those resulting from the full model.
For strong collapses, the solution of the latter reveals that an important part of the energy concentrated
during the collapse is used to generate an outgoing pressure wave. For the examples considered in
this research, peak pressures are larger than those predicted by Rayleigh–Plesset type equations,
whereas the amplitudes of the rebounds are smaller
The locality of the square-root method for improved staggered quarks
We study the effects of improvement on the locality of square-rooted
staggered Dirac operators in lattice QCD simulations. We find the localisation
lengths of the improved operators (FAT7TAD and ASQTAD) to be very similar to
that of the one-link operator studied by Bunk et al., being at least the
Compton wavelength of the lightest particle in the theory, even in the
continuum limit. We conclude that improvement has no effect. We discuss the
implications of this result for the locality of the nth-rooted fermion
determinant used to reduce the number of sea quark flavours, and for possible
staggered valence quark formulations
Engineering many-body quantum dynamics by disorder
Going beyond the currently investigated regimes in experiments on quantum
transport of ultracold atoms in disordered potentials, we predict a crossover
between regular and quantum-chaotic dynamics when varying the strength of
disorder. Our spectral approach is based on the Bose-Hubbard model describing
interacting atoms in deep random potentials. The predicted crossover from
localized to diffusive dynamics depends on the simultaneous presence of
interactions and disorder, and can be verified in the laboratory by monitoring
the evolution of typical experimental initial states.Comment: 4 pages, 4 figures (improved version), to be published in PR
Joining Forces of Bayesian and Frequentist Methodology: A Study for Inference in the Presence of Non-Identifiability
Increasingly complex applications involve large datasets in combination with
non-linear and high dimensional mathematical models. In this context,
statistical inference is a challenging issue that calls for pragmatic
approaches that take advantage of both Bayesian and frequentist methods. The
elegance of Bayesian methodology is founded in the propagation of information
content provided by experimental data and prior assumptions to the posterior
probability distribution of model predictions. However, for complex
applications experimental data and prior assumptions potentially constrain the
posterior probability distribution insufficiently. In these situations Bayesian
Markov chain Monte Carlo sampling can be infeasible. From a frequentist point
of view insufficient experimental data and prior assumptions can be interpreted
as non-identifiability. The profile likelihood approach offers to detect and to
resolve non-identifiability by experimental design iteratively. Therefore, it
allows one to better constrain the posterior probability distribution until
Markov chain Monte Carlo sampling can be used securely. Using an application
from cell biology we compare both methods and show that a successive
application of both methods facilitates a realistic assessment of uncertainty
in model predictions.Comment: Article to appear in Phil. Trans. Roy. Soc.
Quantum interference effects in particle transport through square lattices
We study the transport of a quantum particle through square lattices of
various sizes by employing the tight-binding Hamiltonian from quantum
percolation. Input and output semi-infinite chains are attached to the lattice
either by diagonal point to point contacts or by a busbar connection. We find
resonant transmission and reflection occuring whenever the incident particle's
energy is near an eigenvalue of the lattice alone (i.e., the lattice without
the chains attached). We also find the transmission to be strongly dependent on
the way the chains are attached to the lattice.Comment: 4 pages, 6 figures, submitted to Phys. Rev.
The transition from adiabatic inspiral to geodesic plunge for a compact object around a massive Kerr black hole: Generic orbits
The inspiral of a stellar mass compact object falling into a massive Kerr
black hole can be broken into three different regimes: An adiabatic inspiral
phase, where the inspiral timescale is much larger than the orbital period; a
late-time radial infall, which can be approximated as a plunging geodesic; and
a regime where the body transitions from the inspiral to plunge. In earlier
work, Ori and Thorne have outlined a method to compute the trajectory during
this transition for a compact object in a circular, equatorial orbit. We
generalize this technique to include inclination and eccentricity.Comment: 11 pages, 6 figures. Accepted by Phys. Rev. D. New version addresses
referee's comment
Predicting the stability of atom-like and molecule-like unit-charge Coulomb three-particle systems
Non-relativistic quantum chemical calculations of the particle mass, m ± 2 , corresponding to the dissociation threshold in a range of Coulomb three-particle systems of the form {m ± 1 m ± 2 m ∓ 3 } , are performed variationally using a series solution method with a Laguerre-based wavefunction. These masses are used to calculate an accurate stability boundary, i.e., the line that separates the stability domain from the instability domains, in a reciprocal mass fraction ternary diagram. This result is compared to a lower bound to the stability domain derived from symmetric systems and reveals the importance of the asymmetric (mass-symmetry breaking) terms in the Hamiltonian at dissociation. A functional fit to the stability boundary data provides a simple analytical expression for calculating the minimum mass of a third particle required for stable binding to a two-particle system, i.e., for predicting the bound state stability of any unit-charge three-particle system
Neutral and ionic dopants in helium clusters: interaction forces for the and
The potential energy surface (PES) describing the interactions between
and and an extensive
study of the energies and structures of a set of small clusters,
, have been presented by us in a previous series of
publications [1-3]. In the present work we want to extend the same analysis to
the case of the excited and of the
ionized Li moiety. We thus show here calculated
interaction potentials for the two title systems and the corresponding fitting
of the computed points. For both surfaces the MP4 method with cc-pV5Z basis
sets has been used to generate an extensive range of radial/angular coordinates
of the two dimensional PES's which describe rigid rotor molecular dopants
interacting with one He partner
A New Superintegrable Hamiltonian
We identify a new superintegrable Hamiltonian in 3 degrees of freedom,
obtained as a reduction of pure Keplerian motion in 6 dimensions. The new
Hamiltonian is a generalization of the Keplerian one, and has the familiar 1/r
potential with three barrier terms preventing the particle crossing the
principal planes. In 3 degrees of freedom, there are 5 functionally independent
integrals of motion, and all bound, classical trajectories are closed and
strictly periodic. The generalisation of the Laplace-Runge-Lenz vector is
identified and shown to provide functionally independent isolating integrals.
They are quartic in the momenta and do not arise from separability of the
Hamilton-Jacobi equation. A formulation of the system in action-angle variables
is presented.Comment: 11 pages, 4 figures, submitted to The Journal of Mathematical Physic
Massive Black Hole Binary Systems in Hierarchical Scenario of Structure Formation
The hierarchical scenario of structure formation describes how objects like
galaxies and galaxy clusters are formed by mergers of small objects. In this
scenario, mergers of galaxies can lead to the formation of massive black hole
(MBH) binary systems. On the other hand, the merger of two MBH could produce a
gravitational wave signal detectable, in principle, by the Laser Interferometer
Space Antenna (LISA). In the present work, we use the Press-Schechter
formalism, and its extension, to describe the merger rate of haloes which
contain massive black holes. Here, we do not study the gravitational wave
emission of these systems. However, we present an initial study to determine
the number of systems formed via mergers that could permit, in a future
extension of this work, the calculation of the signature in gravitational waves
of these systems.Comment: to match the published version in International Journal of Modern
Physics
- …