4 research outputs found
Memory deficits in APP23/Abca1+/− mice correlate with the level of Aβ oligomers
ABCA1, a member of the ATP-binding cassette family of transporters, lipidates ApoE (apolipoprotein A) and is essential for the generation of HDL (high-density lipoprotein)-like particles in the CNS (central nervous system). Lack of Abca1 increases amyloid deposition in several AD (Alzheimer's disease) mouse models. We hypothesized that deletion of only one copy of Abca1 in APP23 (where APP is amyloid precursor protein) AD model mice will aggravate memory deficits in these mice. Using the Morris Water Maze, we demonstrate that 2-year-old Abca1 heterozygous APP23 mice (referred to as APP23/het) have impaired learning during acquisition, and impaired memory retention during the probe trial when compared with age-matched wild-type mice (referred to as APP23/wt). As in our previous studies, the levels of ApoE in APP23/het mice were decreased, but the differences in the levels of Aβ and thioflavin-S-positive plaques between both groups were insignificant. Importantly, dot blot analysis demonstrated that APP23/het mice have a significantly higher level of soluble A11-positive Aβ (amyloid β protein) oligomers compared with APP23/wt which correlated negatively with cognitive performance. To confirm this finding, we performed immunohistochemistry with the A11 antibody, which revealed a significant increase of A11-positive oligomer structures in the CA1 region of hippocampi of APP23/het. This characteristic region-specific pattern of A11 staining was age-dependent and was missing in younger APP23 mice lacking Abca1. In contrast, the levels of Aβ*56, as well as other low-molecular-mass Aβ oligomers, were unchanged among the groups. Overall, the results of the present study demonstrate that in aged APP23 mice memory deficits depend on Abca1 and are likely to be mediated by the amount of Aβ oligomers deposited in the hippocampus
E47 is required for V(D)J recombinase activity in common lymphoid progenitors
Common lymphoid progenitors (CLPs) are the first bone marrow precursors in which V(D)J recombinase activity is up-regulated. Here, we show that loss of the transcription factor E47 produces a reduced CLP population that lacks V(D)J recombinase activity and D-JH rearrangements in vivo. Apart from a profound arrest before the pro–B cell stage, other downstream lymphoid progeny of CLPs are still intact in these mice albeit at reduced numbers. In contrast to the inhibition of recombinase activity in early B lineage precursors in E47-deficient animals, loss of either E47 or its cis-acting target Erag (enhancer of rag transcription) has little effect on recombinase activity in thymic T lineage precursors. Taken together, this work defines a role for E47 in regulating lineage progression at the CLP stage in vivo and describes the first transcription factor required for lineage-specific recombinase activity