187 research outputs found

    Reliability of corticospinal excitability and intracortical inhibition in biceps femoris during different contraction modes

    Get PDF
    This study aimed to determine the test–retest reliability of a range of transcranial magnetic stimulation (TMS) outcomes in the biceps femoris during isometric, eccentric and concentric contractions. Corticospinal excitability (active motor threshold 120% [AMT120%] and area under recruitment curve [AURC]), short- and long-interval intracortical inhibition (SICI and LICI) and intracortical facilitation (ICF) were assessed from the biceps femoris in 10 participants (age 26.3 ± 6.0 years; height 180.2 ± 6.6 cm, body mass 77.2 ± 8.0 kg) in three sessions. Single- and paired-pulse stimuli were delivered under low-level muscle activity (5% ± 2% of maximal isometric root mean squared surface electromyography [rmsEMG]) during isometric, concentric and eccentric contractions. Participants were provided visual feedback on their levels of rmsEMG during all contractions. Single-pulse outcomes measured during isometric contractions (AURC, AMT110%, AMT120%, AMT130%, AMT150%, AMT170%) demonstrated fair to excellent reliability (ICC range, .51 to .92; CV%, 21% to 37%), whereas SICI, LICI and ICF demonstrated good to excellent reliability (ICC range, .62 to .80; CV%, 19 to 42%). Single-pulse outcomes measured during concentric contractions demonstrated excellent reliability (ICC range, .75 to .96; CV%, 15% to 34%), whereas SICI, LICI and ICF demonstrated good to excellent reliability (ICC range, .65 to .76; CV%, 16% to 71%). Single-pulse outcomes during eccentric contractions demonstrated fair to excellent reliability (ICC range, .56 to .96; CV%, 16% to 41%), whereas SICI, LICI and ICF demonstrated good to excellent (ICC range, .67 to .86; CV%, 20% to 42%). This study found that both single- and paired-pulse TMS outcomes can be measured from the biceps femoris muscle across all contraction modes with fair to excellent reliability. However, coefficient of variation values were typically greater than the smallest worthwhile change which may make tracking physiological changes in these variables difficult without moderate to large effect sizes

    Fluctuating Cu-O-Cu Bond model of high temperature superconductivity in cuprates

    Full text link
    Twenty years of extensive research has yet to produce a general consensus on the origin of high temperature superconductivity (HTS). However, several generic characteristics of the cuprate superconductors have emerged as the essential ingredients of and/or constraints on any viable microscopic model of HTS. Besides a Tc of order 100K, the most prominent on the list include a d-wave superconducting gap with Fermi liquid nodal excitations, a d-wave pseudogap with the characteristic temperature scale T*, an anomalous doping-dependent oxygen isotope shift, nanometer-scale gap inhomogeneity, etc.. The key role of planar oxygen vibrations implied by the isotope shift and other evidence, in the context of CuO2 plane symmetry and charge constraints from the strong intra-3d Coulomb repulsion U, enforces an anharmonic mechanism in which the oxygen vibrational amplitude modulates the strength of the in-plane Cu-Cu bond. We show, within a Fermi liquid framework, that this mechanism can lead to strong d-wave pairing and to a natural explanation of the salient features of HTS

    Unusual T_c variation with hole concentration in Bi_2Sr_{2-x}La_xCuO_{6+\delta}

    Full text link
    We have investigated the TcT_c variation with the hole concentration pp in the La-doped Bi 2201 system, Bi2_2Sr2−x_{2-x}Lax_xCuO6+δ_{6+\delta}. It is found that the Bi 2201 system does not follow the systematics in TcT_c and pp observed in other high-TcT_c cuprate superconductors (HTSC's). The TcT_c vs pp characteristics are quite similar to what observed in Zn-doped HTSC's. An exceptionally large residual resistivity component in the inplane resistivity indicates that strong potential scatterers of charge carriers reside in CuO2_2 planes and are responsible for the unusual TcT_c variation with pp, as in the Zn-doped systems. However, contrary to the Zn-doped HTSC's, the strong scatter in the Bi 2201 system is possibly a vacancy in the Cu site.Comment: RevTeX, 3 figures, to be published in the Physical Review

    Implications of the isotope effects on the magnetization, magnetic torque and susceptibility

    Full text link
    We analyze the magnetization, magnetic torque and susceptibility data of La2-xSrxCu(16,18)O4 and YBa2(63,65)CuO7-x near Tc in terms of the universal 3D-XY scaling relations. It is shown that the isotope effect on Tc mirrors that on the anisotropy. Invoking the generic behavior of the anisotropy the doping dependence of the isotope effects on the critical properties, including Tc, correlation lengths and magnetic penetration depths are traced back to a change of the mobile carrier concentration.Comment: 5 pages, 3 figure

    The Search for Higher TcT_c in Houston

    Full text link
    It is a great pleasure to be invited to join the chorus on this auspicious occasion to celebrate Professor K. Alex Mueller's 90th birthday by Professors Annette Bussman-Holder, Hugo Keller, and Antonio Bianconi. As a student in high temperature superconductivity, I am forever grateful to Professor Alex Mueller and Dr. Georg Bednorz "for their important breakthrough in the discovery of superconductivity in the ceramic materials" in 1986 as described in the citation of their 1987 Nobel Prize in Physics. It is this breakthrough discovery that has ushered in the explosion of research activities in high temperature superconductivity (HTS) and has provided immense excitement in HTS science and technology in the ensuing decades till now. Alex has not been resting on his laurels and has continued to search for the origin of the unusual high temperature superconductivity in cuprates.Comment: Dedicated to Alex Mueller, whose "important breakthrough in the discovery of superconductivity in ceramic materials" in 1986 has changed the world of superconductivit

    Anomalous electronic susceptibility in Bi2Sr2CuO6+d and comparison with other overdoped cuprates

    Full text link
    We report magnetic susceptibility performed on overdoped Bi2Sr2CuO6+d powders as a function of oxygen doping d and temperature T. The decrease of the spin susceptibility with increasing T is confirmed. At sufficient high temperature, the spin susceptibility Chi_s presents an unusual linear temperature dependence Chi_s ~ Chi_s0 -Chi_1 T. Moreover, a linear correlation between Chi_1 and Chi_s0 for increasing hole concentration is displayed. A temperature Tchi, independent of hole doping characterizes this scaling. Comparison with other cuprates of the literature(LSCO, Tl-2201 and Bi-2212), over the same overdoped range, shows similarities with above results. These non conventional metal features will be discussed in terms of a singular narrow-band structure.Comment: 16 pages, 4 figure

    Electronic structure of the trilayer cuprate superconductor Bi2_2Sr2_2Ca2_2Cu3_3O10+δ_{10+\delta}

    Full text link
    The low-energy electronic structure of the trilayer cuprate superconductor Bi2_2Sr2_2Ca2_2Cu3_3O10+δ_{10+\delta} near optimal doping is investigated by angle-resolved photoemission spectroscopy. The normal state quasiparticle dispersion and Fermi surface, and the superconducting d-wave gap and coherence peak are observed and compared with those of single and bilayer systems. We find that both the superconducting gap magnitude and the relative coherence-peak intensity scale linearly with TcT_c for various optimally doped materials. This suggests that the higher TcT_c of the trilayer system should be attributed to parameters that simultaneously enhance phase stiffness and pairing strength.Comment: 5 pages, 5 figre

    Thermopower in the strongly overdoped region of single-layer Bi2Sr2CuO6+d superconductor

    Full text link
    The evolution of the thermoelectric power S(T) with doping, p, of single-layer Bi2Sr2CuO6+d ceramics in the strongly overdoped region is studied in detail. Analysis in term of drag and diffusion contributions indicates a departure of the diffusion from the T-linear metallic behavior. This effect is increased in the strongly overdoped range (p~0.2-0.28) and should reflect the proximity of some topological change.Comment: 4 pages, 4 figure

    Coherent quasiparticle weight and its connection to high-T_c superconductivity from angle-resolved photoemission

    Full text link
    In conventional superconductors, the pairing energy gap (\Delta) and superconducting phase coherence go hand-in-hand. As the temperature is lowered, both the energy gap and phase coherence appear at the transition temperature T_c. In contrast, in underdoped high-T_c superconductors (HTSCs), a pseudogap appears at a much higher temperature T^*, smoothly evolving into the superconducting gap at T_c. Phase coherence on the other hand is only established at T_c, signaled by the appearance of a sharp quasiparticle (QP) peak in the excitation spectrum. Another important difference between the two types of superconductors is in the ratio of 2\Delta / T_c=R. In BCS theory, R~3.5, is constant. In the HTSCs this ratio varies widely, continuing to increase in the underdoped region, where the gap increases while T_c decreases. Here we report that in HTSCs it is the ratio z_A\Delta_m/T_c which is approximately constant, where \Delta_m is the maximum value of the d-wave gap, and z_A is the weight of the coherent excitations in the spectral function. This is highly unusual, since in nearly all phase transitions, T_c is determined by an energy scale alone. We further show that in the low-temperature limit, z_{\it A} increases monotonically with increasing doping x. The growth is linear, i.e. z_A(x)\propto x, in the underdoped to optimally doped regimes, and slows down in overdoped samples. The reduction of z_A with increasing temperature resembles that of the c-axis superfluid density.Comment: 11 pages, 5 figures, revised versio

    Nature of the Electronic Excitations near the Brillouin Zone Boundary of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    Based on angle resolved photoemission spectra measured on different systems at different dopings, momenta and photon energies, we show that the anomalously large spectral linewidth in the (π,0)(\pi,0) region of optimal doped and underdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} has significant contributions from the bilayer splitting, and that the scattering rate in this region is considerably smaller than previously estimated. This new picture of the electronic excitation near (π,0)(\pi,0) puts additional experimental constraints on various microscopic theories and data analysis.Comment: 5 pages, 4 figure
    • …
    corecore