982 research outputs found

    Progression and Forecast of a Curated Web-of-Trust: A Study on the Debian Project's Cryptographic Keyring

    Get PDF
    The Debian project is one of the largest free software undertakings worldwide. It is geographically distributed, and participation in the project is done on a voluntary basis, without a single formal employee or directly funded person. As we will explain, due to the nature of the project, its authentication needs are very strict — User/password schemes are way surpassed, and centralized trust management schemes such as PKI are not compatible with its distributed and flat organization; fully decentralized schemes such as the PGP Web of Trust are insuficient by themselves. The Debian project has solved this need by using what we termed a ``curated Web of Trust''. We will explain some lessons learned from a massive key migration process that was triggered in 2014. We will present the social insight we have found from examining the relationships expressed as signatures in this curated Web of Trust, some recommendations on personal key-signing policies, and a statistical study and forecast on aging, refreshment and survival of project participants stemming from an analysis on their key-handling

    Novel statistical approaches for non-normal censored immunological data: analysis of cytokine and gene expression data

    Get PDF
    Background: For several immune-mediated diseases, immunological analysis will become more complex in the future with datasets in which cytokine and gene expression data play a major role. These data have certain characteristics that require sophisticated statistical analysis such as strategies for non-normal distribution and censoring. Additionally, complex and multiple immunological relationships need to be adjusted for potential confounding and interaction effects. Objective: We aimed to introduce and apply different methods for statistical analysis of non-normal censored cytokine and gene expression data. Furthermore, we assessed the performance and accuracy of a novel regression approach in order to allow adjusting for covariates and potential confounding. Methods: For non-normally distributed censored data traditional means such as the Kaplan-Meier method or the generalized Wilcoxon test are described. In order to adjust for covariates the novel approach named Tobit regression on ranks was introduced. Its performance and accuracy for analysis of non-normal censored cytokine/gene expression data was evaluated by a simulation study and a statistical experiment applying permutation and bootstrapping. Results: If adjustment for covariates is not necessary traditional statistical methods are adequate for non-normal censored data. Comparable with these and appropriate if additional adjustment is required, Tobit regression on ranks is a valid method. Its power, type-I error rate and accuracy were comparable to the classical Tobit regression. Conclusion: Non-normally distributed censored immunological data require appropriate statistical methods. Tobit regression on ranks meets these requirements and can be used for adjustment for covariates and potential confounding in large and complex immunological datasets

    A new approach of nonparametric estimation of incidence and lifetime risk based on birth rates and incident events

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Incidence and lifetime risk of diabetes are important public health measures. Traditionally, nonparametric estimates are obtained from survey data by means of a Nelson-Aalen estimator which requires data information on both incident events and risk sets from the entire cohort. Such data information is rarely available in real studies.</p> <p>Methods</p> <p>We compare two different approaches for obtaining nonparametric estimates of age-specific incidence and lifetime risk with emphasis on required assumptions. The first and novel approach only considers incident cases occurring within a fixed time window–we have termed this <it>cohort-of-cases </it>data–which is linked explicitly to the birth process in the past. The second approach is the usual Nelson-Aalen estimate which requires knowledge on observed time at risk for the entire cohort and their incident events. Both approaches are used on data on anti-diabetic medications obtained from Odense Pharmacoepidemiological Database, which covers a population of approximately 470,000 over the period 1993–2003. For both methods we investigate if and how incidence rates can be projected.</p> <p>Results</p> <p>Both the new and standard method yield similar sigmoidal shaped estimates of the cumulative distribution function of age-specific incidence. The Nelson-Aalen estimator gives somewhat higher estimates of lifetime risk (15.65% (15.14%; 16.16%) for females, and 17.91% (17.38%; 18.44%) for males) than the estimate based on cohort-of-cases data (13.77% (13.74%; 13.81%) for females, 15.61% (15.58%; 15.65%) for males). Accordingly the projected incidence rates are higher based on the Nelson-Aalen estimate–also too high when compared to observed rates. In contrast, the cohort-of-cases approach gives projections that fit observed rates better.</p> <p>Conclusion</p> <p>The developed methodology for analysis of cohort-of-cases data has potential to become a cost-effective alternative to a traditional survey based study of incidence. To allow more general use of the methodology, more research is needed on how to relax stationarity assumptions.</p

    Semiparametric Multivariate Accelerated Failure Time Model with Generalized Estimating Equations

    Full text link
    The semiparametric accelerated failure time model is not as widely used as the Cox relative risk model mainly due to computational difficulties. Recent developments in least squares estimation and induced smoothing estimating equations provide promising tools to make the accelerate failure time models more attractive in practice. For semiparametric multivariate accelerated failure time models, we propose a generalized estimating equation approach to account for the multivariate dependence through working correlation structures. The marginal error distributions can be either identical as in sequential event settings or different as in parallel event settings. Some regression coefficients can be shared across margins as needed. The initial estimator is a rank-based estimator with Gehan's weight, but obtained from an induced smoothing approach with computation ease. The resulting estimator is consistent and asymptotically normal, with a variance estimated through a multiplier resampling method. In a simulation study, our estimator was up to three times as efficient as the initial estimator, especially with stronger multivariate dependence and heavier censoring percentage. Two real examples demonstrate the utility of the proposed method

    Breast cancer risk reduction:is it feasible to initiate a randomised controlled trial of a lifestyle intervention programme (ActWell) within a national breast screening programme?

    Get PDF
    BackgroundBreast cancer is the most commonly diagnosed cancer and the second cause of cancer deaths amongst women in the UK. The incidence of the disease is increasing and is highest in women from least deprived areas. It is estimated that around 42% of the disease in post-menopausal women could be prevented by increased physical activity and reductions in alcohol intake and body fatness. Breast cancer control endeavours focus on national screening programmes but these do not include communications or interventions for risk reductionThis study aimed to assess the feasibility of delivery, indicative effects and acceptability of a lifestyle intervention programme initiated within the NHS Scottish Breast Screening Programme (NHSSBSP).MethodsA 1:1 randomised controlled trial (RCT) of the 3 month ActWell programme (focussing on body weight, physical activity and alcohol) versus usual care conducted in two NHSSBSP sites between June 2013 and January 2014. Feasibility assessments included recruitment, retention, and fidelity to protocol. Indicative outcomes were measured at baseline and 3 month follow-up (body weight, waist circumference, eating and alcohol habits and physical activity. At study end, a questionnaire assessed participant satisfaction and qualitative interviews elicited women¿s, coaches and radiographers¿ experiences. Statistical analysis used Chi squared tests for comparisons in proportions and paired t tests for comparisons of means. Linear regression analyses were performed, adjusted for baseline values, with group allocation as a fixed effectResultsA pre-set recruitment target of 80 women was achieved within 12 weeks and 65 (81%) participants (29 intervention, 36 control) completed 3 month assessments. Mean age was 58¿±¿5.6 years, mean BMI was 29.2¿±¿7.0 kg/m2 and many (44%) reported a family history of breast cancer.The primary analysis (baseline body weight adjusted) showed a significant between group difference favouring the intervention group of 2.04 kg (95%CI ¿3.24 kg to ¿0.85 kg). Significant, favourable between group differences were also detected for BMI, waist circumference, physical activity and sitting time. Women rated the programme highly and 70% said they would recommend it to others.ConclusionsRecruitment, retention, indicative results and participant acceptability support the development of a definitive RCT to measure long term effects.Trial registrationThe trial was registered with Current Controlled Trials (ISRCTN56223933)

    Allelic based gene-gene interactions in rheumatoid arthritis

    Get PDF
    The detection of gene-gene interaction is an important approach to understand the etiology of rheumatoid arthritis (RA). The goal of this study is to identify gene-gene interaction of SNPs at the allelic level contributing to RA using real data sets (Problem 1) of North American Rheumatoid Arthritis Consortium (NARAC) provided by Genetic Analysis Workshop 16 (GAW16). We applied our novel method that can detect the interaction by a definition of nonrandom association of alleles that occurs when the contribution to RA of a particular allele inherited in one gene depends on a particular allele inherited at other unlinked genes. Starting with 639 single-nucleotide polymorphisms (SNPs) from 26 candidate genes, we identified ten two-way interacting genes and one case of three-way interacting genes. SNP rs2476601 on PTPN22 interacts with rs2306772 on SLC22A4, which interacts with rs881372 on TRAF1 and rs2900180 on C5, respectively. SNP rs2900180 on C5 interacts with rs2242720 on RUNX1, which interacts with rs881375 on TRAF1. Furthermore, rs2476601 on PTPN22 also interacts with three SNPs (rs2905325, rs1476482, and rs2106549) in linkage disequilibrium (LD) on IL6. The other three SNPs (rs2961280, rs2961283, and rs2905308) in LD on IL6 interact with two SNPs (rs477515 and rs2516049) on HLA-DRB1. SNPs rs660895 and rs532098 on HLA-DRB1 interact with rs2834779 and four SNPs in LD on RUNX1. Three-way interacting genes of rs10229203 on IL6, rs4816502 on RUNX1, and rs10818500 on C5 were also detected

    Empirical study of correlated survival times for recurrent events with proportional hazards margins and the effect of correlation and censoring.

    Get PDF
    Background: In longitudinal studies where subjects experience recurrent incidents over a period of time, such as respiratory infections, fever or diarrhea, statistical methods are required to take into account the within-subject correlation. Methods: For repeated events data with censored failure, the independent increment (AG), marginal (WLW) and conditional (PWP) models are three multiple failure models that generalize Cox"s proportional hazard model. In this paper, we revise the efficiency, accuracy and robustness of all three models under simulated scenarios with varying degrees of within-subject correlation, censoring levels, maximum number of possible recurrences and sample size. We also study the methods performance on a real dataset from a cohort study with bronchial obstruction. Results: We find substantial differences between methods and there is not an optimal method. AG and PWP seem to be preferable to WLW for low correlation levels but the situation reverts for high correlations. Conclusions: All methods are stable in front of censoring, worsen with increasing recurrence levels and share a bias problem which, among other consequences, makes asymptotic normal confidence intervals not fully reliable, although they are well developed theoretically
    corecore