8 research outputs found

    A Bioinformatics Resource for TWEAK-Fn14 Signaling Pathway

    Get PDF
    TNF-related weak inducer of apoptosis (TWEAK) is a new member of the TNF superfamily. It signals through TNFRSF12A, commonly known as Fn14. The TWEAK-Fn14 interaction regulates cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis, tissue remodeling and inflammation. Although TWEAK has been reported to be associated with autoimmune diseases, cancers, stroke, and kidney-related disorders, the downstream molecular events of TWEAK-Fn14 signaling are yet not available in any signaling pathway repository. In this paper, we manually compiled from the literature, in particular those reported in human systems, the downstream reactions stimulated by TWEAK-Fn14 interactions. Our manual amassment of the TWEAK-Fn14 pathway has resulted in cataloging of 46 proteins involved in various biochemical reactions and TWEAK-Fn14 induced expression of 28 genes. We have enabled the availability of data in various standard exchange formats from NetPath, a repository for signaling pathways. We believe that this composite molecular interaction pathway will enable identification of new signaling components in TWEAK signaling pathway. This in turn may lead to the identification of potential therapeutic targets in TWEAK-associated disorders

    Cigarette smoke induces metabolic reprogramming in lung cells

    No full text
    Cigarette smoking remains the leading cause of non-small cell lung carcinoma. Studies involving acute exposure of smoke on lung cells revealed induction of pre- cancerous state in lung cells. Recently few studies have reported the chronic effect of cigarette smoke in inducing cellular transformation. Yet no systemic study has been performed to understand the molecular alterations in lung cells due to cigarette smoke. Hence it is both important and necessary to study the chronic effect of cigarette smoke in a temporal setting to understand the molecular alterations. In this study, we carried out TMT based proteomic profiling of lung cells which were exposed to cigarette smoke condensate (CSC) for upto 12 months. We identified 2621 proteins in total, of which 145, 114, 87, 169 and 671 proteins were differentially expressed (p<0.05, 1.5 fold) in 2nd, 4th, 6th, 8th and 12th month respectively.Pathway analysis revealed enrichment of xenobiotic metabolism signaling for the first 8 months of smoke treatment, whereas continued exposure of smoke for 12 months revealed mitochondrial reprogramming in cells which includes dysregulation of oxidative phosphorylation machinery leading to enhanced reactive oxygen species and higher expression of enzymes involved in tricarboxylic acid cycle (TCA). In addition, chronic exposure of smoke led to overexpression of enzymes involved in glutamine metabolism, fatty acid degradation and lactate synthesis. This could possibly explain the availability of alternative source of carbon in TCA cycle apart from glycolytic pyruvate. Our data indicates that chronic exposure to cigarette smoke induces metabolic transformation in cells to support growth and survival

    A multi-omic analysis to characterize cigarette smoke induced molecular alterations in esophageal cells

    No full text
    Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers with high mortality rate. Smoking is one of the established risk factors of ESCC. However, there is limited data on molecular alterations associated with cigarette smoke exposure in esophageal cells. Understanding the effects of cigarette smoke on esophageal squamous epithelial cells at a molecular level would lead to a better understanding of the pathobiology of ESCC which has implications for identification of early biomarkers and therapeutic targets. To investigate the effect of cigarette smoke exposure, we developed a cell line model where Het1A cells (non-neoplastic human esophageal epithelial cells) were chronically treated with cigarette smoke condensate (CSC) for 2 months, 4 months, 6 months and 8 months. We carried out comparative proteomic, phosphoproteomic and whole exome sequencing analyses on CSC treated and untreated cells. Increased cell proliferation, invasion and anchorage independent growth of Het1A cells was observed after chronic exposure to cigarette smoke. Using quantitative proteomic and phosphoproteomic analyses, we identified 35 proteins and 118 phosphoproteins that showed differential expression. Bioinformatics analysis of differentially expressed proteins and phosphoproteins showed enrichment of molecules involved in DNA damage response pathway. To further understand the mutational burden associated with cigarette smoke, we did whole exome sequencing of CSC treated and untreated cells which also revealed mutations and copy number alterations in genes associated with DNA damage response. By correlating WES, proteomic and phosphoproteomic results, we observed potential loss of function in HMGN2 and MED1 that were reported as potential tumor suppressors and are known to play important role in DNA damage response. We also observed decreased expression of HMGN2 in tissue section of ESCC. Overexpression of HMGN2 and MED1 lead to decreased proliferative and invasive ability of CSC treated cells. These findings suggest that cigarette smoke affects genes and proteins associated with DNA damage response pathways which might play a vital role in development of ESCC

    Phosphotyrosine profiling of curcumin-induced signaling

    No full text
    BACKGROUND: Curcumin, derived from the rhizome Curcuma longa, is a natural anti-cancer agent and has been shown to inhibit proliferation and survival of tumor cells. Although the anti-cancer effects of curcumin are well established, detailed understanding of the signaling pathways altered by curcumin is still lacking. In this study, we carried out SILAC-based quantitative proteomic analysis of a HNSCC cell line (CAL 27) to investigate tyrosine signaling in response to curcumin. RESULTS: Using high resolution Orbitrap Fusion Tribrid Fourier transform mass spectrometer, we identified 627 phosphotyrosine sites mapping to 359 proteins. We observed alterations in the level of phosphorylation of 304 sites corresponding to 197 proteins upon curcumin treatment. We report here for the first time, curcumin-induced alterations in the phosphorylation of several kinases including TNK2, FRK, AXL, MAPK12 and phosphatases such as PTPN6, PTPRK, and INPPL1 among others. Pathway analysis revealed that the proteins differentially phosphorylated in response to curcumin are known to be involved in focal adhesion kinase signaling and actin cytoskeleton reorganization. CONCLUSIONS: The study indicates that curcumin may regulate cellular processes such as proliferation and migration through perturbation of the focal adhesion kinase pathway. This is the first quantitative phosphoproteomics-based study demonstrating the signaling events that are altered in response to curcumin. Considering the importance of curcumin as an anti-cancer agent, this study will significantly improve the current knowledge of curcumin-mediated signaling in cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12014-016-9114-0) contains supplementary material, which is available to authorized users
    corecore