38 research outputs found

    Poly(m-Phenylenediamine) Nanospheres and Nanorods: Selective Synthesis and Their Application for Multiplex Nucleic Acid Detection

    Get PDF
    In this paper, we demonstrate for the first time that poly(m-phenylenediamine) (PMPD) nanospheres and nanorods can be selectively synthesized via chemical oxidation polymerization of m-phenylenediamine (MPD) monomers using ammonium persulfate (APS) as an oxidant at room temperature. It suggests that the pH value plays a critical role in controlling the the morphology of the nanostructures and fast polymerization rate favors the anisotropic growth of PMPD under homogeneous nucleation condition. We further demonstrate that such PMPD nanostructures can be used as an effective fluorescent sensing platform for multiplex nucleic acid detection. A detection limit as low as 50 pM and a high selectivity down to single-base mismatch could be achieved. The fluorescence quenching is attributed to photoinduced electron transfer from nitrogen atom in PMPD to excited fluorophore. Most importantly, the successful use of this sensing platform in human blood serum system is also demonstrated

    Recovery potential of rare earth elements (REEs) from the gem mining waste of Sri Lanka:A case study for mine waste management

    No full text
    Sri Lanka is one of the wealthiest countries in terms of gems. Therefore, gem mining is extensively carried out in many areas of Sri Lanka, including districts such as Ratnapura, Monaragala, Matale, and Kalutara. During the mining process, only valuable gemstones are collected, and the remaining gravel fraction with many heavy minerals is discarded. Therefore, the gem mining industry produces a large amount of waste that is mainly used only for backfilling. To sustainably manage this waste stream, gem mining waste collected from a gem pit at Wagawatta in the Kalutara district in Sri Lanka was investigated for value recovery, specifically for rare-earth elements (REEs). The gem-bearing alluvial layer contained 0.3% rare-earth oxide (REO) that could easily be upgraded up to 2.8% (LREEs = 94%) with wet sieving and subsequent density separation via a shaking table. Therefore, the concentrates of gem mine tailings with REE-bearing minerals have the potential to be a secondary source for LREEs. The organic-rich clay layer underlying the gem-bearing alluvial layer contained 0.6% REO with 49% HREEs, including Gd, Dy, Er, Yb, and especially Y enrichments. Detailed explorations are thus necessary to assess the REE potential in Sri Lanka’s gem mining waste, and value recovery flowsheets should be subsequently developed to economically extract REEs. In addition, the presence of high U concentrations (800 mg/kg) in the concentrated samples could be alarming when considering the health and safety of the people engaged in gem mining. This aspect also requires detailed research studies
    corecore