167 research outputs found

    Resistivity and optical conductivity of cuprates within the t-J model

    Full text link
    The optical conductivity σ(ω)\sigma(\omega) and the d.c. resistivity ρ(T)\rho(T) within the extended t-J model on a square lattice, as relevant to high-TcT_c cuprates, are reinvestigated using the exact-diagonalization method for small systems, improved by performing a twisted boundary condition averaging. The influence of the next-nearest-neighbor hopping tt' is also considered. The behaviour of results at intermediate doping is consistent with a marginal-Fermi-liquid scenario and in the case of t=0t'=0 for ω>T\omega>T follows the power law σων\sigma \propto \omega^{-\nu} with ν0.65\nu \sim 0.65 consistent with experiments. At low doping ch<0.1c_h<0.1 for T<JT<J σ(ω)\sigma(\omega) develops a shoulder at ωω\omega\sim \omega^*, consistent with the observed mid-infrared peak in experiments, accompanied by a shallow dip for ω<ω\omega < \omega^*. This region is characterized by the resistivity saturation, whereas a more coherent transport appears at T<TT < T^* producing a more pronounced decrease in ρ(T)\rho(T). The behavior of the normalized resistivity chρ(T)c_h \rho(T) is within a factor of 2 quantitatively consistent with experiments in cuprates.Comment: 8 pages, 10 figure

    Temperature Dependence of Hall Response in Doped Antiferromagnets

    Full text link
    Using finite-temperature Lanczos method the frequency-dependent Hall response is calculated numerically for the t-J model on the square lattice and on ladders. At low doping, both the high-frequency RH* and the d.c. Hall coefficient RH0 follow qualitatively similar behavior at higher temperatures: being hole-like for T > Ts~1.5J and weakly electron-like for T < Ts. Consistent with experiments on cuprates, RH0 changes, in contrast to RH*, again to the hole-like sign below the pseudogap temperature T*, revealing a strong temperature variation for T->0.Comment: LaTeX, 4 pages, 4 figures, submitted to PR

    Breakdown of the Luttinger sum rule within the Mott-Hubbard insulator

    Full text link
    The validity of the Luttinger sum rule is investigated within the prototype tight-binding model of interacting fermions in one dimension, i.e., the t-V model including the next-nearest neighbor hopping t' in order to break the particle-hole symmetry. Scaling analysis of finite-system results at half-filling reveals evident breakdown of the sum rule in the regime of large gap at V >> t, while the sum rule appears to recover together with vanishing of the Mott-Hubbard gap.Comment: 4 pages, 5 figure

    Luttinger sum rule for finite systems of correlated electrons

    Full text link
    The validity of the Luttinger sum rule is considered for finite systems of interacting electrons, where the Fermi volume is determined by location of zeroes of Green's function. It is shown that the sum rule in the paramagnetic state is evidently violated within the planar t-J model at low doping while for the related Hubbard model, even in the presence of next-nearest-neighbor hopping, no clearcut exception is found.Comment: 4 pages, 1 figur

    Conductivity in a disordered one-dimensional system of interacting fermions

    Full text link
    Dynamical conductivity in a disordered one-dimensional model of interacting fermions is studied numerically at high temperatures and in the weak-interaction regime in order to find a signature of many-body localization and vanishing d.c. transport coefficients. On the contrary, we find in the regime of moderately strong local disorder that the d.c. conductivity sigma0 scales linearly with the interaction strength while being exponentially dependent on the disorder. According to the behavior of the charge stiffness evaluated at the fixed number of particles, the absence of the many-body localization seems related to an increase of the effective localization length with the interaction.Comment: 4 pages, 5 figures, submitted to PR

    Spin-fluctuation mechanism of superconductivity in cuprates

    Full text link
    The theory of superconductivity within the t-J model, as relevant for cuprates, is developed. It is based on the equations of motion for projected fermionic operators and the mode-coupling approximation for the self-energy matrix. The dynamical spin susceptibility at various doping is considered as an input, extracted from experiments. The analysis shows that the superconductivity onset is dominated by the spin-fluctuation contribution. We show that T_c is limited by the spin-fluctuation scale Γ\Gamma and shows a pronounced dependence on the next-nearest-neighbor hopping t'. The latter can offer an explanation for the variation of T_c among different families of cuprates.Comment: Color figure

    Coexistence of Anomalous and Normal Diffusion in Integrable Mott Insulators

    Full text link
    We study the finite-momentum spin dynamics in the one-dimensional XXZ spin chain within the Ising-type regime at high temperatures using density autocorrelations within linear response theory and real-time propagation of nonequilibrium densities. While for the nonintegrable model results are well consistent with normal diffusion, the finite-size integrable model unveils the coexistence of anomalous and normal diffusion in different regimes of time. In particular, numerical results show a Gaussian relaxation at smallest nonzero momenta which we relate to nonzero stiffness in a grand canonical ensemble. For larger but still small momenta normal-like diffusion is recovered. Similar results for the model of impenetrable particles also help to resolve rather conflicting conclusions on transport in integrable Mott insulators.Comment: 5 pages, 4 figure
    corecore