117 research outputs found
A neurobiological perspective on social influence: Serotonin and social adaptation
Humans are inherently social beings. Being suggestible to each other's expectations enables pro-social skills that are crucial for social learning and adaptation. Despite their high relevance for psychiatry, the neurobiological mechanisms underlying social adaptation are still not well understood. This review, therefore, provides a conceptual framework covering various distinct mechanisms underlying social adaptation and explores the neuropharmacology — in particular the role of the serotonin (5-HT) system — in modulating these mechanisms. This article reviews empirical results on social influence processing and reconciles them with recent findings from psychedelic research on social processing to elucidate neurobiological and neuropharmacological underpinnings of social adaptation. Various computational, neurobiological, and neurochemical processes are involved in distinct mechanisms underlying social adaptation such as the multisensory process of social information integration that is crucial for the forming of self-representation and representations of social norms. This is again associated with self- and other-perception during social interactions as well as value-based decision-making that guides our behavior in daily interactions. We highlight the critical role of 5-HT in these processes and suggest that 5-HT can facilitate social learning and may represent an important target for treating psychiatric disorders characterized by impairments in social functioning. This framework also has important implications for psychedelic-assisted therapy as well as for the development of novel treatment approaches and future research directions
Rostral Anterior Cingulate Thickness Predicts the Emotional Psilocybin Experience
Psilocybin is the psychoactive compound of mushrooms in the psilocybe species. Psilocybin directly affects a number of serotonin receptors, with highest affinity for the serotonin 2A receptor (5HT-2Ar). Generally, the effects of psilocybin, and its active metabolite psilocin, are well established and include a range of cognitive, emotional, and perceptual perturbations. Despite the generality of these effects, there is a high degree of inter-individual variability in subjective psilocybin experiences that are not well understood. Others have shown brain morphology metrics derived from magnetic resonance imaging (MRI) can predict individual drug response. Due to high expression of serotonin 2A receptors (5HT-2Ar) in the cingulate cortex, and its prior associations with psilocybin, we investigate if cortical thickness of this structure predicts the psilocybin experience in healthy adults. We hypothesized that greater cingulate thickness would predict higher subjective ratings in sub-scales of the Five-Dimensional Altered State of Consciousness (5D-ASC) with high emotionality in healthy participants (n = 55) who received oral psilocybin (either low dose: 0.160 mg/kg or high dose: 0.215 mg/kg). After controlling for sex, age, and using false discovery rate (FDR) correction, we found the rostral anterior cingulate predicted all four emotional sub-scales, whereas the caudal and posterior cingulate did not. How classic psychedelic compounds induce such large inter-individual variability in subjective states has been a long-standing question in serotonergic research. These results extend the traditional set and setting hypothesis of the psychedelic experience to include brain structure metrics
Effective Connectivity of Functionally Anticorrelated Networks Under Lysergic Acid Diethylamide
Background: Classic psychedelic-induced ego dissolution involves a shift in the sense of self and a blurring of the boundary between the self and the world. A similar phenomenon is identified in psychopathology and is associated with the balance of anticorrelated activity between the default mode network, which directs attention inward, and the salience network, which recruits the dorsal attention network to direct attention outward.
Methods: To test whether changes in anticorrelated networks underlie the peak effects of lysergic acid diethylamide (LSD), we applied dynamic causal modeling to infer effective connectivity of resting-state functional magnetic resonance imaging scans from a study of 25 healthy adults who were administered 100 μg of LSD or placebo.
Results: We found that inhibitory effective connectivity from the salience network to the default mode network became excitatory, and inhibitory effective connectivity from the default mode network to the dorsal attention network decreased under the peak effect of LSD.
Conclusions: The effective connectivity changes we identified may reflect diminution of the functional anticorrelation between resting-state networks that may be a key neural mechanism of LSD and underlie ego dissolution. Our findings suggest that changes to the sense of self and subject-object boundaries across different states of consciousness may depend upon the organized balance of effective connectivity of resting-state networks
Towards mapping neuro-behavioral heterogeneity of psychedelic neurobiology in humans
Precision psychiatry aims to identify markers of inter-individual variability that allow predicting the right treatment for each patient. However, bridging the gap between molecular-level manipulations and neural systems-level functional alterations remains an unsolved problem in psychiatry. After decades of low success rates in pharmaceutical R&D for psychiatric drugs, multiple studies now point to the potential of psychedelics as a promising fast-acting and long-lasting treatment for some psychiatric symptoms. Yet, given the highly psychoactive nature of these substances, a precision medicine approach is essential to map the neural signals related to clinical efficacy in order to identify patients who can maximally benefit from this treatment. Recent studies have shown that bridging the gap between pharmacology, systems-level neural response in humans and individual experience is possible for psychedelic substances, therefore paving the way for a precision neuropsychiatric therapeutic development. Specifically, it has been shown that the integration of brain-wide PET or transcriptomic data, i.e. receptor distribution for the serotonin 2A receptor, with computational neuroimaging methods can simulate the effect of psychedelics on the human brain. These novel 'computational psychiatry' approaches allow for modeling inter-individual differences in neural as well as subjective effects of psychedelic substances. Collectively, this review provides a deep dive into psychedelic pharmaco-neuroimaging studies with a core focus on how recent computational psychiatry advances in biophysically based circuit modeling can be leveraged to predict individual responses. Finally, we emphasize the importance of human pharmacological neuroimaging for the continued precision therapeutic development of psychedelics.
Keywords: computational modeling; fMRI; neuroimaging; precision psychiatry; psychedelics; serotonin
Effective Connectivity of Thalamocortical Interactions Following d-Amphetamine, LSD, and MDMA Administration
BACKGROUND: While the exploration of serotonergic psychedelics as psychiatric medicines deepens, so does the pressure to better understand how these compounds act on the brain.
METHODS: We used a double-blind, placebo-controlled, crossover design and administered lysergic acid diethylamide (LSD), 3,4-methylenedioxymethamphetamine (MDMA), and d-amphetamine in 25 healthy participants. By using spectral dynamic causal modeling, we mapped substance-induced changes in effective connectivity between the thalamus and different cortex types (unimodal vs. transmodal) derived from a previous study with resting-state functional magnetic resonance imaging data. Due to the distinct pharmacological modes of action of the 3 substances, we were able to investigate specific effects mainly driven by different neurotransmitter systems on thalamocortical and corticothalamic interactions.
RESULTS: Compared with placebo, all 3 substances increased the effective connectivity from the thalamus to specific unimodal cortices, whereas the influence of these cortices on the thalamus was reduced. These results indicate increased bottom-up and decreased top-down information flow between the thalamus and some unimodal cortices. However, for the amphetamines, we found the opposite effects when examining the effective connectivity with transmodal cortices, including parts of the salience network. Intriguingly, LSD increased the effective connectivity from the thalamus to both unimodal and transmodal cortices, indicating a breach in the hierarchical organization of ongoing brain activity.
CONCLUSIONS: The results advance our knowledge about the action of psychedelics on the brain and refine current models aiming to explain the underlying neurobiological processes
Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor
Background:Lysergic acid diethylamide (LSD) has agonist activity at various serotonin (5-HT) and dopamine receptors. Despite the therapeutic and scientific interest in LSD, specific receptor contributions to its neurobiological effects remain unknown. Methods: We therefore conducted a double-blind, randomized, counterbalanced, cross-over study (ClinicalTrials.gov, NCT02451072) during which 24 healthy human participants received either (i) placebo+placebo, (ii) placebo+LSD (100 µg po), or (iii) Ketanserin, a selective 5-HT receptor antagonist,+LSD. We quantified resting-state functional connectivity via a data-driven global brain connectivity method and compared it to cortical gene expression maps. Findings: LSD reduced associative, but concurrently increased sensory-somatomotor brain-wide and thalamic connectivity. Ketanserin fully blocked the subjective and neural LSD effects. Whole-brain spatial patterns of LSD effects matched 5-HT receptor cortical gene expression in humans. Conclusion: Together, these results strongly implicate the 5-HT receptor in LSD's neuropharmacology. This study therefore pinpoints the critical role of 5-HT in LSD's mechanism, which informs its neurobiology and guides rational development of psychedelic-based therapeutics. Funding: Swiss National Science Foundation (SNSF, P2ZHP1_161626, KHP), the Swiss Neuromatrix Foundation (2015 - 0103, FXV), the Usona Institute (2015 - 2056, FXV), the NIH (R01MH112746, JDM; DP5OD012109, AA; R01MH108590, AA), the NIAA ( P50AA012870-16, AA & JHK), the NARSAD Independent Investigator Grant (AA), the Yale CTSA grant (UL1TR000142 Pilot Award, AA), and the Slovenian Research Agency (ARRS J7-6829 & ARRS J7-8275, GR)
Plasma endocannabinoids in cocaine dependence and their interaction with cocaine craving and metabotropic glutamate receptor 5 density in the human brain
Animal models indicate that the endocannabinoid system (ECS) plays a modulatory role in stress and reward processing, both crucially impaired in addictive disorders. Preclinical findings showed endocannabinoid-modulated synaptic plasticity in reward brain networks linked to the metabotropic-glutamate-5 receptor (mGluR5), contributing to drug-reinforcing effects and drug-seeking behavior. Although animal models postulate a link between ECS and cocaine addiction, human translational studies are lacking. Here, we tested previous preclinical findings by investigating plasma endocannabinoids (eCBs) anandamide (AEA), 2-arachidonoylglycerol (2-AG), and the related N-acylethanolamines (NAEs) palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), including their interaction with cerebral mGluR5, in chronic cocaine users (CU). We compared basal plasma concentrations between chronic CU (N=103; 69 recreational CU and 34 dependent CU) and stimulant-naïve healthy controls (N=92). Follow-up basal eCB/NAE plasma levels after 12 months were used for reliability and stability check (CU: N=33; controls: N=43). In an additional analysis usingC-ABP688 positron emission tomography (PET) in a male subsample (CU: N=18; controls: N=16), we investigated the relationships between eCBs/NAEs and mGluR5 density in the brain. We found higher 2-AG plasma levels in dependent CU compared to controls and recreational CU. 2-AG levels were stable over time across all groups. In the PET-subsample, a positive association between 2-AG and mGluR5 brain density only in CU was found. Our results corroborate animal findings suggesting an alteration of the ECS in cocaine dependence and an association between peripheral 2-AG levels and cerebral mGluR5 in humans. Therefore, the ECS might be a promising pharmaco-therapeutic target for novel treatments of cocaine dependence
Plasma endocannabinoids in cocaine dependence and their relation to cerebral metabotropic glutamate receptor 5 density
Animal models indicate that the endocannabinoid system (ECS) plays a modulatory role in stress and reward processing, both crucially impaired in addictive disorders. Preclinical findings showed endocannabinoid-modulated synaptic plasticity in reward brain networks linked to the metabotropic-glutamate-5 receptor (mGluR5), contributing to drug-reinforcing effects and drug-seeking behavior. Although animal models postulate a link between ECS and cocaine addiction, human translational studies are lacking. Here, we tested previous preclinical findings by investigating plasma endocannabinoids (eCBs) anandamide (AEA), 2-arachidonoylglycerol (2-AG), and the related N-acylethanolamines (NAEs) palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), including their interaction with cerebral mGluR5, in chronic cocaine users (CU). We compared basal plasma concentrations between chronic CU (N = 103; 69 recreational CU and 34 dependent CU) and stimulant-naïve healthy controls (N = 92). Follow-up basal eCB/NAE plasma levels after 12 months were used for reliability and stability check (CU: N = 33; controls: N = 43). In an additional analysis using C-ABP688 positron emission tomography (PET) in a male subsample (CU: N = 18; controls: N = 16), we investigated the relationships between eCBs/NAEs and mGluR5 density in the brain. We found higher 2-AG plasma levels in dependent CU compared to controls and recreational CU. 2-AG levels were stable over time across all groups. In the PET-subsample, a positive association between 2-AG and mGluR5 brain density only in CU was found. Our results corroborate animal findings suggesting an alteration of the ECS in cocaine dependence and an association between peripheral 2-AG levels and cerebral mGluR5 in humans. Therefore, the ECS might be a promising pharmaco-therapeutic target for novel treatments of cocaine dependence
The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation
A core aspect of the human self is the attribution of personal relevance to everyday stimuli enabling us to experience our environment as meaningful [1]. However, abnormalities in the attribution of personal relevance to sensory experiences are also critical features of many psychiatric disorders [2, 3]. Despite their clinical relevance, the neurochemical and anatomical substrates enabling meaningful experiences are largely unknown. Therefore, we investigated the neuropharmacology of personal relevance processing in humans by combining fMRI and the administration of the mixed serotonin (5-HT) and dopamine receptor (R) agonist lysergic acid diethylamide (LSD), well known to alter the subjective meaning of percepts, with and without pretreatment with the 5-HT2AR antagonist ketanserin. General subjective LSD effects were fully blocked by ketanserin. In addition, ketanserin inhibited the LSD-induced attribution of personal relevance to previously meaningless stimuli and modulated the processing of meaningful stimuli in cortical midline structures. These findings point to the crucial role of the 5-HT2AR subtype and cortical midline regions in the generation and attribution of personal relevance. Our results thus increase our mechanistic understanding of personal relevance processing and reveal potential targets for the treatment of psychiatric illnesses characterized by alterations in personal relevance attribution
- …