224 research outputs found

    Finite Sample Properties of Tests Based on Prewhitened Nonparametric Covariance Estimators

    Get PDF
    We analytically investigate size and power properties of a popular family of procedures for testing linear restrictions on the coefficient vector in a linear regression model with temporally dependent errors. The tests considered are autocorrelation-corrected F-type tests based on prewhitened nonparametric covariance estimators that possibly incorporate a data-dependent bandwidth parameter, e.g., estimators as considered in Andrews and Monahan (1992), Newey and West (1994), or Rho and Shao (2013). For design matrices that are generic in a measure theoretic sense we prove that these tests either suffer from extreme size distortions or from strong power deficiencies. Despite this negative result we demonstrate that a simple adjustment procedure based on artificial regressors can often resolve this problem.Comment: Some material adde

    How Reliable are Bootstrap-based Heteroskedasticity Robust Tests?

    Full text link
    We develop theoretical finite-sample results concerning the size of wild bootstrap-based heteroskedasticity robust tests in linear regression models. In particular, these results provide an efficient diagnostic check, which can be used to weed out tests that are unreliable for a given testing problem in the sense that they overreject substantially. This allows us to assess the reliability of a large variety of wild bootstrap-based tests in an extensive numerical study.Comment: 59 pages, 1 figur

    Power in High-Dimensional Testing Problems

    Full text link
    Fan et al. (2015) recently introduced a remarkable method for increasing asymptotic power of tests in high-dimensional testing problems. If applicable to a given test, their power enhancement principle leads to an improved test that has the same asymptotic size, uniformly non-inferior asymptotic power, and is consistent against a strictly broader range of alternatives than the initially given test. We study under which conditions this method can be applied and show the following: In asymptotic regimes where the dimensionality of the parameter space is fixed as sample size increases, there often exist tests that can not be further improved with the power enhancement principle. However, when the dimensionality of the parameter space increases sufficiently slowly with sample size and a marginal local asymptotic normality (LAN) condition is satisfied, every test with asymptotic size smaller than one can be improved with the power enhancement principle. While the marginal LAN condition alone does not allow one to extend the latter statement to all rates at which the dimensionality increases with sample size, we give sufficient conditions under which this is the case.Comment: 27 page

    Valid Heteroskedasticity Robust Testing

    Full text link
    Tests based on heteroskedasticity robust standard errors are an important technique in econometric practice. Choosing the right critical value, however, is not simple at all: conventional critical values based on asymptotics often lead to severe size distortions; and so do existing adjustments including the bootstrap. To avoid these issues, we suggest to use smallest size-controlling critical values, the generic existence of which we prove in this article for the commonly used test statistics. Furthermore, sufficient and often also necessary conditions for their existence are given that are easy to check. Granted their existence, these critical values are the canonical choice: larger critical values result in unnecessary power loss, whereas smaller critical values lead to over-rejections under the null hypothesis, make spurious discoveries more likely, and thus are invalid. We suggest algorithms to numerically determine the proposed critical values and provide implementations in accompanying software. Finally, we numerically study the behavior of the proposed testing procedures, including their power properties.Comment: Minor changes; some references added; some minor errors correcte
    • …
    corecore