6 research outputs found
Polyphyly of non-bioluminescent Vibrio fischeri sharing a lux-locus deletion
available in PMC 2013 May 16This study reports the first description and molecular characterization of naturally occurring, non-bioluminescent strains of Vibrio fischeri. These ‘dark’V. fischeri strains remained non-bioluminescent even after treatment with both autoinducer and aldehyde, substrate additions that typically maximize light production in dim strains of luminous bacteria. Surprisingly, the entire lux locus (eight genes) was absent in over 97% of these dark V. fischeri strains. Although these strains were all collected from a Massachusetts (USA) estuary in 2007, phylogenetic reconstructions allowed us to reject the hypothesis that these newly described non-bioluminescent strains exhibit monophyly within the V. fischeri clade. These dark strains exhibited a competitive disadvantage against native bioluminescent strains when colonizing the light organ of the model V. fischeri host, the Hawaiian bobtail squid Euprymna scolopes. Significantly, we believe that the data collected in this study may suggest the first observation of a functional, parallel locus-deletion event among independent lineages of a non-pathogenic bacterial species.National Institutes of Health (U.S.) (NIH Molecular Biosciences (5T32GM007215-35))National Institutes of Health (U.S.) (NIH Microbes in Health and Disease, training grant (2T32AI055397-07))Gordon and Betty Moore FoundationBroad Institute of MIT and Harvard (SPARC programme)National Science Foundation (U.S.) (NSF IOS 0841507)National Institutes of Health (U.S.) (NIH R01 RR12294)National Science Foundation (U.S.) (NSF Microbial Systems in the Biosphere programme)Woods Hole Center for Oceans & Human Healt
Population Genomics of Early Events in the Ecological Differentiation of Bacteria
Genetic exchange is common among bacteria, but its effect on population diversity during ecological differentiation remains controversial. A fundamental question is whether advantageous mutations lead to selection of clonal genomes or, as in sexual eukaryotes, sweep through populations on their own. Here, we show that in two recently diverged populations of ocean bacteria, ecological differentiation has occurred akin to a sexual mechanism: A few genome regions have swept through subpopulations in a habitat-specific manner, accompanied by gradual separation of gene pools as evidenced by increased habitat specificity of the most recent recombinations. These findings reconcile previous, seemingly contradictory empirical observations of the genetic structure of bacterial populations and point to a more unified process of differentiation in bacteria and sexual eukaryotes than previously thought.National Science Foundation (U.S.) (Grant DEB-0918333)Woods Hole Center for Oceans & Human HealthGordon and Betty Moore FoundationUnited States. Dept. of Energy. Genomes To Lif
O-antigen diversity and lateral transfer of the wbe region among Vibrio splendidus isolates
The O-antigen is a highly diverse structure expressed on the outer surface of Gram-negative bacteria. The products responsible for O-antigen synthesis are encoded in the wbe region, which exhibits extensive genetic diversity. While heterogeneous O-antigens are observed within Vibrio species, characterization of these structures has been devoted almost exclusively to pathogens. Here, we investigate O-antigen diversity among coastal marine Vibrio splendidus-like isolates. The wbe region was first identified and characterized using the sequenced genomes of strains LGP32, 12B01 and Med222. These regions were genetically diverse, reflective of their expressed O-antigen. Additional isolates from physically distinct habitats in Plum Island Estuary (MA, USA), including within animal hosts and on suspended particles, were further characterized based on multilocus sequence analysis (MLSA) and O-antigen profiles. Results showed serotype diversity within an ecological setting. Among 48 isolates which were identical in three MLSA genes, 41 showed gpm genetic diversity, a gene closely linked to the wbe locus, and at least 12 expressed different O-antigen profiles further suggesting wbe genetic diversity. Our results demonstrate O-antigen hyper-variability among these environmental strains and suggest that frequent lateral gene transfer generates wbe extensive diversity among V. splendidus and its close relatives.National Institute of General Medical Sciences (U.S.) (F32GM084640)United States. Dept. of Energy (Grant no. DE-FG09-93ER-20097)Woods Hole Center for Oceans and Human HealthGordon and Betty Moore Foundatio
Dynamics and Functional Potential of Stormwater Microorganisms Colonizing Sand Filters
Stormwater management is increasingly relying on engineered infiltration systems (EIS) to reduce the volume and improve the quality of managed stormwater. Yet, EIS in the field will be colonized by a diverse array of environmental microorganisms that change the physiochemical properties of the EIS and provide a habitat for microorganisms with harmful or beneficial qualities. Understanding factors influencing the composition and stability of microbial communities could open up strategies for more efficient management of stormwater. Here, we analyzed the potential pathogenic and metabolic capabilities of stormwater microorganisms colonizing idealized EIS (i.e., sand columns) under laboratory conditions over time. The diversity of microbial communities was analyzed using 16S rRNA gene sequencing, and potential pathogens and denitrifying microbes were identified from taxonomic match to known species. Denitrification potential as determined by nosZ abundance was also assessed with quantitative polymerase chain reaction PCR. Our findings demonstrate that replicate microbial communities colonizing sand columns change in a similar way over time, distinct from control columns and the source community. Potential pathogens were initially more abundant on the columns than in the stormwater but returned to background levels by 24 days after inoculation. The conditions within sand columns select for potential denitrifying microorganisms, some of which were also potential pathogens. These results demonstrate that a diverse suite of stormwater microorganisms colonize sand filters, including a transient population of potential pathogens and denitrifiers. Manipulating the inoculating microbial community of EIS could prove an effective mechanism for changing both potential pathogens and denitrifying bacteria
Distribution-Based Clustering: Using Ecology To Refine the Operational Taxonomic Unit
16S rRNA sequencing, commonly used to survey microbial communities, begins by grouping individual reads into operational taxonomic units (OTUs). There are two major challenges in calling OTUs: identifying bacterial population boundaries and differentiating true diversity from sequencing errors. Current approaches to identifying taxonomic groups or eliminating sequencing errors rely on sequence data alone, but both of these activities could be informed by the distribution of sequences across samples. Here, we show that using the distribution of sequences across samples can help identify population boundaries even in noisy sequence data. The logic underlying our approach is that bacteria in different populations will often be highly correlated in their abundance across different samples. Conversely, 16S rRNA sequences derived from the same population, whether slightly different copies in the same organism, variation of the 16S rRNA gene within a population, or sequences generated randomly in error, will have the same underlying distribution across sampled environments. We present a simple OTU-calling algorithm (distribution-based clustering) that uses both genetic distance and the distribution of sequences across samples and demonstrate that it is more accurate than other methods at grouping reads into OTUs in a mock community. Distribution-based clustering also performs well on environmental samples: it is sensitive enough to differentiate between OTUs that differ by a single base pair yet predicts fewer overall OTUs than most other methods. The program can decrease the total number of OTUs with redundant information and improve the power of many downstream analyses to describe biologically relevant trends.United States. Dept. of Energy (Office of Science, contract no. DEAC02-05CH11231