12 research outputs found

    Entwicklung von In-situ- und Durchfluss-Mikroskopen für die Bioprozesstechnik

    Get PDF
    [no abstract

    Monitoring of microalgal cultivations with on-line, flow-through microscopy

    Get PDF
    Microalgal cultivations present challenges for monitoring and process control posed by their large scale and the likelihood that they will be composed of multiple species. Cell concentration is a fundamental parameter in any cultivation but is typically measured using off-line methods that may be time-consuming, laborious, or subject to interferences. Here, an in-situ microscope has been adapted for monitoring microalgal cultivations by adding a flow-through cell and adjusting image-processing algorithms. After installation in the bypass of a photobioreactor, the microscope enabled the continuous, automated acquisition of cell count, cell size, and cell morphology data on-line during cultivation processes over a period of 20. days, without sampling. The flow-through microscope was tested in cultivations of Chlamydomonas reinhardtii and Chlorella vulgaris. Cell concentration measurements were in agreement with off-line optical density measurements for both species. In addition, cell size and morphology distributions were obtained that revealed population shifts during the cultivation of C. vulgaris. This monitoring system thus provides a means to obtain detailed, non-invasive insights of microalgal cultivation processes.Jud and Pat Harper Professorship in Chemical and Biological EngineeringSustainable Bioenergy Development Center of Colorado State Universit

    In-situ microscopy and 2D fluorescence spectroscopy as online methods for monitoring CHO cells during cultivation

    Get PDF
    Typical methods for monitoring cultivation processes are offline analyses like cell counting, measurement of various substrates and products (e. g. glucose or lactate) as well as the online monitoring of several physical process parameters (temperature, pH-value or the concentration of dissolved oxygen). To improve cell cultivations detailed information about important analytes should be available online. Therefore new monitoring methods need to be established, preferably as in-situ methods to minimize the risk of contamination. Two different in-situ online-methods were used to monitor cultivations: In-situ microscopy and 2D fluorescence spectroscopy. Therefore CHO-K1 cells (provided by University of Bielefeld) were cultivated in a complex culture medium (TC 42, TeutoCell, Bielefeld, Germany) using a 2.5 L stainless steel reactor with a work volume of 2 L. A total of three cultivation runs were conducted

    Robot-Supported Pointing Interaction for Intelligent Environments

    No full text
    A natural interaction with appliances in smart environment is a highly desired form of controlling the surroundings using intuitively learned interpersonal means of communication. Hand and arm gestures, recognized by depth cameras, are a popular representative of this interaction paradigm. However they usually require stationary units that limit applicability in larger environments. To overcome this problem we are introducing a self-localizing mobile robot system that autonomously follows the user in the environment, in order to recognize performed gestures independent from the current user position. We have realized a prototypical implementation using a custom robot platform and evaluated the system with various users

    Evaluation of a multiplex PCR screening approach to identify community-acquired bacterial co-infections in COVID-19: a multicenter prospective cohort study of the German competence network of community-acquired pneumonia (CAPNETZ)

    No full text
    Purpose!#!Thorough knowledge of the nature and frequency of co-infections is essential to optimize treatment strategies and risk assessment in cases of coronavirus disease 2019 (COVID-19). This study aimed to evaluate the multiplex polymerase chain reaction (PCR) screening approach for community-acquired bacterial pathogens (CABPs) at hospital admission, which could facilitate identification of bacterial co-infections in hospitalized COVID-19 patients.!##!Methods!#!Clinical data and biomaterials from 200 hospitalized COVID-19 patients from the observational cohort of the Competence Network for community-acquired pneumonia (CAPNETZ) prospectively recruited between March 17, 2020, and March 12, 2021 in 12 centers in Germany and Switzerland, were included in this study. Nasopharyngeal swab samples were analyzed on hospital admission using multiplex real-time reverse transcription (RT)-PCR for a broad range of CABPs.!##!Results!#!In total of 200 patients Staphylococcus aureus (27.0%), Haemophilus influenzae (13.5%), Streptococcus pneumoniae (5.5%), Moraxella catarrhalis (2.5%), and Legionella pneumophila (1.5%) were the most frequently detected bacterial pathogens. PCR detection of bacterial pathogens correlated with purulent sputum, and showed no correlation with ICU admission, mortality, and inflammation markers. Although patients who received antimicrobial treatment were more often admitted to the ICU and had a higher mortality rate, PCR pathogen detection was not significantly related to antimicrobial treatment.!##!Conclusion!#!General CABP screening using multiplex PCR with nasopharyngeal swabs may not facilitate prediction or identification of bacterial co-infections in the early phase of COVID-19-related hospitalization. Most patients with positive PCR results appear to be colonized rather than infected at that time, questioning the value of routine antibiotic treatment on admission in COVID-19 patients
    corecore