8 research outputs found

    Induced pluripotent stem cells derived from the developing striatum as a potential donor source for cell replacement therapy for Huntington disease

    No full text
    Background: Cell replacement therapy (CRT) for Huntington disease (HD) requires a source of striatal (STR) progenitors capable of restoring the function lost due to STR degeneration. Authentic STR progenitors can be collected from the fetal putative striatum, or whole ganglionic eminence (WGE), but these tissues remain impractical for widespread clinical application, and alternative donor sources are required. Here we begin exploring the possibility that induced pluripotent stem cells (iPSC) derived from WGE may retain an epigenetic memory of their tissue of origin, which could enhance their ability to differentiate into STR cells. / Results: We generate four iPSC lines from human WGE (hWGE) and establish that they have a capacity similar to human embryonic stem cells with regard to their ability to differentiate toward an STR phenotype, as measured by expression and demethylation of key STR genes, while maintaining an overall different methylome. Finally, we demonstrate that these STR-differentiated hWGE iPSCs share characteristics with hWGE (i.e., authentic STR tissues) both in vitro and following transplantation into an HD model. Overall, iPSCs derived from human WGE show promise as a donor source for CRT for HD

    Dissection and preparation of human primary fetal ganglionic eminence tissue for research and clinical applications

    No full text
    Here, we describe detailed dissection and enzymatic dissociation protocols for the ganglionic eminences from the developing human brain to generate viable quasi-single cell suspensions for subsequent use in transplantation or cell culture. These reliable and reproducible protocols can provide tissue for use in the study of the developing human brain, as well as for the preparation of donor cells for transplantation in Huntington’s disease (HD). For use in the clinic as a therapy for HD, the translation of these protocols from the research laboratory to the GMP suite is described, including modification to reagents used and appropriate monitoring and tissue release criteria

    Blood Conservation in the Perioperative Setting

    No full text

    Current Perspective of Stem Cell Therapy in Neurodegenerative and Metabolic Diseases

    No full text

    Huntington’s disease: the coming of age

    No full text
    corecore