13 research outputs found
Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: a mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis
Background: Giant-cell arteritis (GCA) is an inflammatory disease of large/medium-sized arteries, frequently involving the temporal arteries (TA). Inflammation-induced vascular remodelling leads to vaso-occlusive events. Circulating endothelin-1 (ET1) is increased in patients with GCA with ischaemic complications suggesting a role for ET-1 in vascular occlusion beyond its vasoactive function. Objective: To investigate whether ET-1 induces a migratory myofibroblastic phenotype in human TAderived vascular smooth muscle cells (VSMC) leading to intimal hyperplasia and vascular occlusion in GCA. Methods and results: Immunofluorescence/confocal microscopy showed increased ET-1 expression in GCA lesions compared with control arteries. In inflamed arteries, ET-1 was predominantly expressed by infiltrating mononuclear cells whereas ET receptors, particularly ET-1 receptor B (ETB R), were expressed by both mononuclear cells and VSMC. ET-1 increased TA-derived VSMC migration in vitro and α-smooth muscle actin (αSMA) expression and migration from the media to the intima in cultured TA explants. ET-1 promoted VSMC motility by increasing activation of focal adhesion kinase (FAK), a crucial molecule in the turnover of focal adhesions during cell migration. FAK activation resulted in Y397 autophosphorylation creating binding sites for Src kinases and the p85 subunit of PI3kinases which, upon ET-1 exposure, colocalised with FAK at the focal adhesions of migrating VSMC. Accordingly, FAK or PI3K inhibition abrogated ET-1-induced migration in vitro. Consistently, ET-1 receptor A and ETB R antagonists reduced αSMA expression and delayed VSMC outgrowth from cultured GCA-involved artery explants. Conclusions: ET-1 is upregulated in GCA lesions and, by promoting VSMC migration towards the intimal layer, may contribute to intimal hyperplasia and vascular occlusion in GCA
The prohibitin-binding compound fluorizoline induces apoptosis in chronic lymphocytic leukemia cells through the upregulation of NOXA and synergizes with ibrutinib, 5-aminoimidazole-4-carboxamide riboside or venetoclax
Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins. In the study herein, the pro-apoptotic effect of fluorizoline was assessed in 34 primary samples from patients with chronic lymphocytic leukemia. Fluorizoline induced apoptosis in chronic lymphocytic leukemia cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespective of patients' clinical or genetic features, whereas normal T lymphocytes were less sensitive. Fluorizoline increased the protein levels of the pro-apoptotic B-cell lymphoma 2 family member NOXA in chronic lymphocytic leukemia cells. Furthermore, fluorizoline synergized with ibrutinib, 5-aminoimidazole-4-carboxamide riboside or venetoclax to induce apoptosis. These results suggest that targeting prohibitins could be a new therapeutic strategy for chronic lymphocytic leukemia
Targeting prohibitins induces apoptosis in acute myeloid leukemia cells
Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins (PHBs). In this study, the pro-apoptotic effect of fluorizoline was assessed in two cell lines and 21 primary samples from patients with debut of acute myeloid leukemia (AML). Fluorizoline induced apoptosis in AML cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespectively of patients' clinical or genetic features. In addition, fluorizoline inhibited the clonogenic capacity and induced differentiation of AML cells. Fluorizoline increased the mRNA and protein levels of the pro-apoptotic BCL-2 family member NOXA both in cell lines and primary samples analyzed. These results suggest that targeting PHBs could be a new therapeutic strategy for AM
A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation
We previously described diaryl trifluorothiazoline compound 1a (hereafter referred to as fluorizoline) as a first-in-class small molecule that induces p53-independent apoptosis in a wide range of tumor cell lines. Fluorizoline directly binds to prohibitin 1 and 2 (PHBs), two proteins involved in the regulation of several cellular processes, including apoptosis. Here we demonstrate that fluorizoline-induced apoptosis is mediated by PHBs, as cells depleted of these proteins are highly resistant to fluorizoline treatment. In addition, BAX and BAK are necessary for fluorizoline-induced cytotoxic effects, thereby proving that apoptosis occurs through the intrinsic pathway. Expression analysis revealed that fluorizoline induced the upregulation of Noxa and Bim mRNA levels, which was not observed in PHB-depleted MEFs. Finally, Noxa-/-/Bim-/- MEFs and NOXA-downregulated HeLa cells were resistant to fluorizoline-induced apoptosis. All together, these findings show that fluorizoline requires PHBs to execute the mitochondrial apoptotic pathway
Multicomponent reaction access to complex quinolines via oxidation of the povarov adducts
The tetrahydroquinolines obtained through the Povarov multicomponent reaction have been oxidized to the corresponding quinoline, giving access to a single product through a two-step sequence. Several oxidizing agents were studied and manganese dioxide proved to be the reagent of choice, affording higher yields, cleaner reactions and practical protocols
Two-electron connection between tryptophan and phenylalanine/tyrosine residues: linked, constrained and stapled peptides through C-H activation processes
Natural peptides show high degrees of specificity in their biological action. However, their therapeutical profile is severely limited by their conformational freedom and metabolic instability. Stapled peptides constitute a solution to these problems and access to these structures lies on a limited number of reactions involving the use of non-natural amino acids. Here, we describe a synthetic strategy for the preparation of unique constrained peptides featuring a covalent bond between tryptophan and phenylalanine or tyrosine residues. The preparation of such peptides is achieved in solution and on solid phase directly from the corresponding sequences having an iodo-aryl amino acid through an intramolecular palladium-catalysed C-H activation process. Moreover, complex topologies arise from the internal stapling of cyclopeptides and double intramolecular arylations within a linear peptide. Finally, as a proof of principle, we report the application to this new stapling method to relevant biologically active compounds
Two-electron connection between tryptophan and phenylalanine/tyrosine residues: linked, constrained and stapled peptides through C-H activation processes
Natural peptides show high degrees of specificity in their biological action. However, their therapeutical profile is severely limited by their conformational freedom and metabolic instability. Stapled peptides constitute a solution to these problems and access to these structures lies on a limited number of reactions involving the use of non-natural amino acids. Here, we describe a synthetic strategy for the preparation of unique constrained peptides featuring a covalent bond between tryptophan and phenylalanine or tyrosine residues. The preparation of such peptides is achieved in solution and on solid phase directly from the corresponding sequences having an iodo-aryl amino acid through an intramolecular palladium-catalysed C-H activation process. Moreover, complex topologies arise from the internal stapling of cyclopeptides and double intramolecular arylations within a linear peptide. Finally, as a proof of principle, we report the application to this new stapling method to relevant biologically active compounds
Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: a mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis
Background: Giant-cell arteritis (GCA) is an inflammatory disease of large/medium-sized arteries, frequently involving the temporal arteries (TA). Inflammation-induced vascular remodelling leads to vaso-occlusive events. Circulating endothelin-1 (ET1) is increased in patients with GCA with ischaemic complications suggesting a role for ET-1 in vascular occlusion beyond its vasoactive function. Objective: To investigate whether ET-1 induces a migratory myofibroblastic phenotype in human TAderived vascular smooth muscle cells (VSMC) leading to intimal hyperplasia and vascular occlusion in GCA. Methods and results: Immunofluorescence/confocal microscopy showed increased ET-1 expression in GCA lesions compared with control arteries. In inflamed arteries, ET-1 was predominantly expressed by infiltrating mononuclear cells whereas ET receptors, particularly ET-1 receptor B (ETB R), were expressed by both mononuclear cells and VSMC. ET-1 increased TA-derived VSMC migration in vitro and α-smooth muscle actin (αSMA) expression and migration from the media to the intima in cultured TA explants. ET-1 promoted VSMC motility by increasing activation of focal adhesion kinase (FAK), a crucial molecule in the turnover of focal adhesions during cell migration. FAK activation resulted in Y397 autophosphorylation creating binding sites for Src kinases and the p85 subunit of PI3kinases which, upon ET-1 exposure, colocalised with FAK at the focal adhesions of migrating VSMC. Accordingly, FAK or PI3K inhibition abrogated ET-1-induced migration in vitro. Consistently, ET-1 receptor A and ETB R antagonists reduced αSMA expression and delayed VSMC outgrowth from cultured GCA-involved artery explants. Conclusions: ET-1 is upregulated in GCA lesions and, by promoting VSMC migration towards the intimal layer, may contribute to intimal hyperplasia and vascular occlusion in GCA
The prohibitin-binding compound fluorizoline induces apoptosis in chronic lymphocytic leukemia cells through the upregulation of NOXA and synergizes with ibrutinib, 5-aminoimidazole-4-carboxamide riboside or venetoclax
Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins. In the study herein, the pro-apoptotic effect of fluorizoline was assessed in 34 primary samples from patients with chronic lymphocytic leukemia. Fluorizoline induced apoptosis in chronic lymphocytic leukemia cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespective of patients' clinical or genetic features, whereas normal T lymphocytes were less sensitive. Fluorizoline increased the protein levels of the pro-apoptotic B-cell lymphoma 2 family member NOXA in chronic lymphocytic leukemia cells. Furthermore, fluorizoline synergized with ibrutinib, 5-aminoimidazole-4-carboxamide riboside or venetoclax to induce apoptosis. These results suggest that targeting prohibitins could be a new therapeutic strategy for chronic lymphocytic leukemia