43 research outputs found
Direct transfer of pump amplitude to parametric down-converted photons
We numerically and experimentally show that all photons generated by
spontaneous parametric down-conversion (SPDC) follow a transverse amplitude
similar to that of the pump. This amplitude transfer from pump to SPDC is
revealed in the Fourier image plane of the down-converted photons restricted by
an aperture. We also observe a considerable shift of the image plane from the
actual Fourier plane, when size of the aperture is gradually increased. The
shift of the Fourier image of down-converted photons affects the quality of
spatial mode-based projection in various quantum correlation experiments with
parametric down-converted photon pairs. The results may be useful in
applications of down-converted photons for quantum imaging and quantum
communication.Comment: 5 pages, 6 figure
Perfect vortex beam : Fourier transformation of a Bessel beam
We derive a mathematical description of a perfect vortex beam as the Fourier transformation of a Bessel beam. Building on this development, we experimentally generate Bessel-Gauss beams of different orders and Fourier transform them to form perfect vortex beams. By controlling the radial wave vector of a Bessel-Gauss beam, we can control the ring radius of the generated beam. Our theoretical predictions match with the experimental results and also provide an explanation for previous published works. We find the perfect vortex resembles that of an orbital angular momentum (OAM) mode supported in annular profiled waveguides. Our prefect vortex beam generation method can be used to excite OAM modes in an annular core fiber
Exploring the route from leaky Berreman modes to bound states in continuum
We study coupling of leaky Berreman modes in polar dielectric films (SiO2)
through a thin metallic layer (gold) and show the familiar signatures of normal
mode splitting. Due to very large negative real part of the dielectric function
of gold, the splitting shows up only for extremely thin coupling layers. In
contrast, coupling of Berreman modes through a dielectric spacer layer reveals
novel possibilities of having bound states in continuum, albeit in the limit of
vanishing losses. It is shown that the corresponding dispersion branches of the
symmetric and antisymmetric modes can cross. BIC is shown to occur on one of
these branches which is characterized by lower loss. In fact the BIC
corresponds to the point where the radiative losses are minimized. For thicker
layers (both spacer and the polar dielectric) BIC is shown to occur on the
higher order dispersion branches. The origin of BIC is traced to the
Fabry-Perot type mechanism due to the excitation of the leaky guided modes in
the central layer
Orbital-angular-momentum polarization mode dispersion in optical fibers
The orbital-angular-momentum (OAM) modes in optical fibers have polarization mode dispersion (PMD) properties similar to those of single-mode fibers (SMFs). The +l and -l order OAM modes supported by the same fiber vector modes undergo random cross coupling and exhibit a frequency-dependent time delay. We name this effect “OAM-PMD” and extend the formalism developed for PMD in SMFs to describe OAM-PMD. The characteristics of the modal beat lengths, birefringence correlation lengths, and the mean value of OAM-PMD are investigated. A fixed-analyzer technique is proposed and demonstrated to characterize this phenomenon in OAM fibers. Two different types of OAM fiber are examined. The measured results are compared with the theoretical calculations
Mode division multiplexing using orbital angular momentum modes over 1.4 km ring core fiber
Mode division multiplexing (MDM) systems using orbital angular momentum (OAM) modes can recover the data in D different modes without recourse to full (2D × 2D) multiple input multiple output (MIMO) processing. One of the biggest challenges in OAM-MDM systems is the mode instability following fiber propagation. Previously, MIMO-free OAM-MDM data transmission with two modes over 1.1 km of vortex fiber was demonstrated, where optical polarization demultiplexing was employed in the setup. We demonstrate MDM data transmission using two OAM modes over 1.4 km of a specially designed ring core fiber without using full MIMO processing or optical polarization demultiplexing. We demonstrate reception with electrical polarization demultiplexing, i.e., minimal 2 × 2 MIMO, showing the compatibility of OAM-MDM with current polarization demultiplexing receivers
