12 research outputs found

    Rapidly reconfigurable slow-light system based on off-resonant Raman absorption

    Get PDF
    We present a slow-light system based on dual Raman absorption resonances in warm rubidium vapor. Each Raman absorption resonance is produced by a control beam in an off-resonant Λ system. This system combines all optical control of the Raman absorption and the low-dispersion broadening properties of the double Lorentzian absorption slow light. The bandwidth, group delay, and central frequency of the slow-light system can all be tuned dynamically by changing the properties of the control beam. We demonstrate multiple pulse delays with low distortion and show that such a system has fast switching dynamics and thus fast reconfiguration rates

    Storage and Retrieval of Multimode Transverse Images in Hot Atomic Rubidium Vapor

    Get PDF
    We report on the experimental realization of the storage of images in a hot vapor of Rubidium atoms. The images are stored in and retrieved from the long-lived ground state atomic coherences. We show that an image impressed onto a 500 ns pulse can be stored and retrieved up to 30  μs later. The image storage is made robust to diffusion by storing the Fourier transform of the image

    All Optical Waveguiding in a Coherent Atomic Rubidium Vapor

    Get PDF
    We demonstrate an all optical waveguide imprinted by a low power Laguerre Gaussian control laser beam using a coherent Raman process in warm atomic rubidium vapor. We show that the signal beam propagates with a small spot size over several diffraction lengths. We also show that the coupling efficiency of the signal beam into the waveguide varies linearly with the signal power

    Four-Wave-Mixing Stopped Light in Hot Atomic Rubidium Vapour

    Get PDF
    Digital signal processing, holography, and quantum and classical information processing rely heavily upon recording the amplitude and phase of coherent optical signals. One method for achieving coherent information storage makes use of electromagnetically induced transparency. Storage is achieved by compressing the optical pulse using the steep dispersion of the electromagnetically induced transparency medium and then mapping the electric field to local atomic quantum-state superpositions. Here we show that nonlinear optical processes may enhance pulse compression and storage, and that information about the nonlinear process itself may be stored coherently. We report on a pulse storage scheme in hot atomic rubidium vapour, in which a four-wave-mixing normal mode is stored using a double-Λ configuration. The entire (broadened) waveform of the input signal is recovered after several hundred microseconds (1/e time of about 120 µs), as well as a new optical mode (idler) generated from the four-wave-mixing process

    Rapidly Reconfigurable Slow-Light System Based on Off-Resonant Raman Absorption

    Get PDF
    We present a slow-light system based on dual Raman absorption resonances in warm rubidium vapor. Each Raman absorption resonance is produced by a control beam in an off-resonant Λ system. This system combines all optical control of the Raman absorption and the low-dispersion broadening properties of the double Lorentzian absorption slow light. The bandwidth, group delay, and central frequency of the slow-light system can all be tuned dynamically by changing the properties of the control beam. We demonstrate multiple pulse delays with low distortion and show that such a system has fast switching dynamics and thus fast reconfiguration rates

    Interferometric weak value deflections: quantum and classical treatments

    Get PDF
    We derive the weak value deflection given in a paper by Dixon et al. (Phys. Rev. Lett. 102, 173601 (2009)) both quantum mechanically and classically. This paper is meant to cover some of the mathematical details omitted in that paper owing to space constraints

    Slow-Light Fourier Transform Interferometer

    Get PDF
    We describe a new type of Fourier transform (FT) interferometer in which the tunable optical delay between the two arms is realized by using a continuously variable slow-light medium instead of a moving arm as in a conventional setup. The spectral resolution of such a FT interferometer exceeds that of a conventional setup of comparable size by a factor equal to the maximum group index of the slow-light medium. The scheme is experimentally demonstrated by using a rubidium atomic vapor cell as the tunable slow-light medium, and the spectral resolution is enhanced by a factor of approximately 100

    Interferometric Weak Value Deflections: Quantum and Classical Treatments

    Get PDF
    We derive the weak value deflection given in an article by Dixon et al. [P. B. Dixon et al. Phys. Rev. Lett. 102 173601 (2009)] both quantum mechanically and classically, including diffraction effects. This article is meant to cover some of the mathematical details omitted in that article owing to space constraints

    Double Lorentzian Atomic Prism

    Get PDF
    We present an atomic prism spectrometer that utilizes the steep linear dispersion between two strongly absorbing hyperfine resonances of rubidium. We resolve spectral lines 50 MHz apart and, utilizing a larger part of the available spectrum than only between the two resonances, we spatially separate collinear pump, signal, and idler beams resulting from a four-wave mixing process. Due to the high transparency possible between the resonances, these results have applications in the filtering of narrow-band entangled photons and interaction-free measurements
    corecore