30 research outputs found

    Light Field Blind Motion Deblurring

    Full text link
    We study the problem of deblurring light fields of general 3D scenes captured under 3D camera motion and present both theoretical and practical contributions. By analyzing the motion-blurred light field in the primal and Fourier domains, we develop intuition into the effects of camera motion on the light field, show the advantages of capturing a 4D light field instead of a conventional 2D image for motion deblurring, and derive simple methods of motion deblurring in certain cases. We then present an algorithm to blindly deblur light fields of general scenes without any estimation of scene geometry, and demonstrate that we can recover both the sharp light field and the 3D camera motion path of real and synthetically-blurred light fields.Comment: To be presented at CVPR 201

    Learning to Synthesize a 4D RGBD Light Field from a Single Image

    Full text link
    We present a machine learning algorithm that takes as input a 2D RGB image and synthesizes a 4D RGBD light field (color and depth of the scene in each ray direction). For training, we introduce the largest public light field dataset, consisting of over 3300 plenoptic camera light fields of scenes containing flowers and plants. Our synthesis pipeline consists of a convolutional neural network (CNN) that estimates scene geometry, a stage that renders a Lambertian light field using that geometry, and a second CNN that predicts occluded rays and non-Lambertian effects. Our algorithm builds on recent view synthesis methods, but is unique in predicting RGBD for each light field ray and improving unsupervised single image depth estimation by enforcing consistency of ray depths that should intersect the same scene point. Please see our supplementary video at https://youtu.be/yLCvWoQLnmsComment: International Conference on Computer Vision (ICCV) 201

    Aperture Supervision for Monocular Depth Estimation

    Full text link
    We present a novel method to train machine learning algorithms to estimate scene depths from a single image, by using the information provided by a camera's aperture as supervision. Prior works use a depth sensor's outputs or images of the same scene from alternate viewpoints as supervision, while our method instead uses images from the same viewpoint taken with a varying camera aperture. To enable learning algorithms to use aperture effects as supervision, we introduce two differentiable aperture rendering functions that use the input image and predicted depths to simulate the depth-of-field effects caused by real camera apertures. We train a monocular depth estimation network end-to-end to predict the scene depths that best explain these finite aperture images as defocus-blurred renderings of the input all-in-focus image.Comment: To appear at CVPR 2018 (updated to camera ready version

    PersonNeRF: Personalized Reconstruction from Photo Collections

    Full text link
    We present PersonNeRF, a method that takes a collection of photos of a subject (e.g. Roger Federer) captured across multiple years with arbitrary body poses and appearances, and enables rendering the subject with arbitrary novel combinations of viewpoint, body pose, and appearance. PersonNeRF builds a customized neural volumetric 3D model of the subject that is able to render an entire space spanned by camera viewpoint, body pose, and appearance. A central challenge in this task is dealing with sparse observations; a given body pose is likely only observed by a single viewpoint with a single appearance, and a given appearance is only observed under a handful of different body poses. We address this issue by recovering a canonical T-pose neural volumetric representation of the subject that allows for changing appearance across different observations, but uses a shared pose-dependent motion field across all observations. We demonstrate that this approach, along with regularization of the recovered volumetric geometry to encourage smoothness, is able to recover a model that renders compelling images from novel combinations of viewpoint, pose, and appearance from these challenging unstructured photo collections, outperforming prior work for free-viewpoint human rendering.Comment: Project Page: https://grail.cs.washington.edu/projects/personnerf

    Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields

    Full text link
    Neural Radiance Field training can be accelerated through the use of grid-based representations in NeRF's learned mapping from spatial coordinates to colors and volumetric density. However, these grid-based approaches lack an explicit understanding of scale and therefore often introduce aliasing, usually in the form of jaggies or missing scene content. Anti-aliasing has previously been addressed by mip-NeRF 360, which reasons about sub-volumes along a cone rather than points along a ray, but this approach is not natively compatible with current grid-based techniques. We show how ideas from rendering and signal processing can be used to construct a technique that combines mip-NeRF 360 and grid-based models such as Instant NGP to yield error rates that are 8% - 76% lower than either prior technique, and that trains 22x faster than mip-NeRF 360.Comment: Project page: https://jonbarron.info/zipnerf

    Single View Refractive Index Tomography with Neural Fields

    Full text link
    Refractive Index Tomography is an inverse problem in which we seek to reconstruct a scene's 3D refractive field from 2D projected image measurements. The refractive field is not visible itself, but instead affects how the path of a light ray is continuously curved as it travels through space. Refractive fields appear across a wide variety of scientific applications, from translucent cell samples in microscopy to fields of dark matter bending light from faraway galaxies. This problem poses a unique challenge because the refractive field directly affects the path that light takes, making its recovery a non-linear problem. In addition, in contrast with traditional tomography, we seek to recover the refractive field using a projected image from only a single viewpoint by leveraging knowledge of light sources scattered throughout the medium. In this work, we introduce a method that uses a coordinate-based neural network to model the underlying continuous refractive field in a scene. We then use explicit modeling of rays' 3D spatial curvature to optimize the parameters of this network, reconstructing refractive fields with an analysis-by-synthesis approach. The efficacy of our approach is demonstrated by recovering refractive fields in simulation, and analyzing how recovery is affected by the light source distribution. We then test our method on a simulated dark matter mapping problem, where we recover the refractive field underlying a realistic simulated dark matter distribution
    corecore