7,303 research outputs found
COPTRAN - A method of optimum communication systems design
Single set of mathematical expressions describes system cost and probability of error of data transmission in terms of four basic parameters in the link equation. A Lagrange multiplier sets up equations whose solutions yield the optimum values for system design considerations and weight and cost values
Study and development of a mathematical analysis for the performance assessment of space communication system parameters
Electronic computer program user manual for optimum design of space communication syste
User's manual for COPTRAN, a method of optimum communication system design
User manual for COPTRAN /communication system optimization program translator
Causality Violations in Cascade Models of Nuclear Collisions
Transport models have successfully described many aspects of intermediate
energy heavy-ion collision dynamics. As the energies increase in these models
to the ultrarelativistic regime, Lorentz covariance and causality are not
strictly respected. The standard argument is that such effects are not
important to final results; but they have not been seriously considered at high
energies. We point out how and why these happen, how serious of a problem they
may be and suggest ways of reducing or eliminating the undesirable effects.Comment: RevTeX, 23 pages, 9 (uuencoded) figures; to appear in Phys. Rev
Pairing of 1-hexyl-3-methylimidazolium and tetrafluoroborate ions in n-pentanol
Molecular dynamics simulations are obtained and analyzed to study pairing of
1-hexyl-3-methylimidazolium and tetrafluoroborate ions in n-pentanol, in
particular by evaluating the potential-of-mean-force between counter ions. The
present molecular model and simulation accurately predicts the dissociation
constant Kd in comparison to experiment, and thus the behavior and magnitudes
for the ion-pair pmf at molecular distances, even though the dielectric
constant of the simulated solvent differs from the experimental value by about
30%. A naive dielectric model does not capture molecule structural effects such
as multiple conformations and binding geometries of the Hmim+ and BF4-
ion-pairs. Mobilities identify multiple time-scale effects in the
autocorrelation of the random forces on the ions, and specifically a slow,
exponential time-decay of those long-ranged forces associated here with
dielectric friction effects.Comment: 5 pages, 7 figures. V2: Figs. 4 & 7 redrawn for better visual clarity
with log-scales. No change in results. In press J. Chem. Phys. 201
N terminus is key to the dominant negative suppression of CaV2 calcium channels: implications for episodic ataxia type 2
Expression of the calcium channels CaV2.1 and CaV2.2 is markedly suppressed by co-expression with truncated constructs containing Domain I. This is the basis for the phenomenon of dominant negative suppression observed for many of the episodic ataxia type 2 mutations in CaV2.1 that predict truncated channels. The process of dominant negative suppression has been shown previously to stem from interaction between the full-length and truncated channels and to result in downstream consequences of the unfolded protein response and endoplasmic reticulum-associated protein degradation. We have now identified the specific domain that triggers this effect. For both CaV2.1 and CaV2.2, the minimum construct producing suppression was the cytoplasmic N terminus. Suppression was enhanced by tethering the N terminus to the membrane with a CAAX motif. The 11-amino acid motif (including Arg52 and Arg54) within the N terminus, which we have previously shown to be required for G protein modulation, is also essential for dominant negative suppression. Suppression is prevented by addition of an N-terminal tag (XFP) to the full-length and truncated constructs. We further show that suppression of CaV2.2 currents by the N terminus-CAAX construct is accompanied by a reduction in CaV2.2 protein level, and this is also prevented by mutation of Arg52 and Arg54 to Ala in the truncated construct. Taken together, our evidence indicates that both the extreme N terminus and the Arg52, Arg54 motif are involved in the processes underlying dominant negative suppression
Tsunamis, Viscosity and the HBT Puzzle
The equation of state and bulk and shear viscosities are shown to be able to
affect the transverse dynamics of a central heavy ion collision. The net
entropy, along with the femtoscopic radii are shown to be affected at the
10-20% level by both shear and bulk viscosity. The degree to which these
effects help build a tsunami-like pulse is also discussed.Comment: Contribution to SQM 2007 in Levoca, Slovaki
Investigating the hard X-ray emission from the hottest Abell cluster A2163 with Suzaku
We present the results from Suzaku observations of the hottest Abell galaxy
cluster A2163 at . To study the physics of gas heating in cluster
mergers, we investigated hard X-ray emission from the merging cluster A2163,
which hosts the brightest synchrotron radio halo. We analyzed hard X-ray
spectra accumulated from two-pointed Suzaku observations. Non-thermal hard
X-ray emission should result from the inverse Compton (IC) scattering of
relativistic electrons by the CMB photons. To measure this emission, the
dominant thermal emission in the hard X-ray band must be modeled in detail. To
this end, we analyzed the combined broad-band X-ray data of A2163 collected by
Suzaku and XMM-Newton, assuming single- and multi-temperature models for
thermal emission and the power-law model for non-thermal emission. From the
Suzaku data, we detected significant hard X-ray emission from A2163 in the
12-60 keV band at the level (or at the level if a
systematic error is considered). The Suzaku HXD spectrum alone is consistent
with the single-T thermal model of gas temperature keV. From the XMM
data, we constructed a multi-T model including a very hot ( keV)
component in the NE region. Incorporating the multi-T and the power-law models
into a two-component model with a radio-band photon index, the 12-60 keV energy
flux of non-thermal emission is constrained within . The 90% upper limit of detected IC
emission is marginal ( in the
12-60 keV). The estimated magnetic field in A2163 is .
While the present results represent a three-fold increase in the accuracy of
the broad band spectral model of A2163, more sensitive hard X-ray observations
are needed to decisively test for the presence of hard X-ray emission due to IC
emission.Comment: 7 pages, 7 figures, A&A accepted. Minor correctio
Advanced analog television study final report, 4 nov. - 19 dec. 1963
Information bandwidth reduction for analog television signals - Description of multiple interlace syste
Canonical and Microcanonical Distributions for Fermi Systems
Recursion relations are presented that allow exact calculation of canonical
and microcanonical partition functions of degenerate Fermi systems, assuming no
explicit two-body interactions. Calculations of the level density, sorted by
angular momentum, are presented for Ni-56 are presented. The issue of treating
unbound states is also addressed.Comment: 5 pages, 5 figure
- …