9,581 research outputs found
An interactive computer code for calculation of gas-phase chemical equilibrium (EQLBRM)
A user friendly, menu driven, interactive computer program known as EQLBRM which calculates the adiabatic equilibrium temperature and product composition resulting from the combustion of hydrocarbon fuels with air, at specified constant pressure and enthalpy is discussed. The program is developed primarily as an instructional tool to be run on small computers to allow the user to economically and efficiency explore the effects of varying fuel type, air/fuel ratio, inlet air and/or fuel temperature, and operating pressure on the performance of continuous combustion devices such as gas turbine combustors, Stirling engine burners, and power generation furnaces
On the engineering of crucial software
The various aspects of the conventional software development cycle are examined. This cycle was the basis of the augmented approach contained in the original grant proposal. This cycle was found inadequate for crucial software development, and the justification for this opinion is presented. Several possible enhancements to the conventional software cycle are discussed. Software fault tolerance, a possible enhancement of major importance, is discussed separately. Formal verification using mathematical proof is considered. Automatic programming is a radical alternative to the conventional cycle and is discussed. Recommendations for a comprehensive approach are presented, and various experiments which could be conducted in AIRLAB are described
Zig-zag Sort: A Simple Deterministic Data-Oblivious Sorting Algorithm Running in O(n log n) Time
We describe and analyze Zig-zag Sort--a deterministic data-oblivious sorting
algorithm running in O(n log n) time that is arguably simpler than previously
known algorithms with similar properties, which are based on the AKS sorting
network. Because it is data-oblivious and deterministic, Zig-zag Sort can be
implemented as a simple O(n log n)-size sorting network, thereby providing a
solution to an open problem posed by Incerpi and Sedgewick in 1985. In
addition, Zig-zag Sort is a variant of Shellsort, and is, in fact, the first
deterministic Shellsort variant running in O(n log n) time. The existence of
such an algorithm was posed as an open problem by Plaxton et al. in 1992 and
also by Sedgewick in 1996. More relevant for today, however, is the fact that
the existence of a simple data-oblivious deterministic sorting algorithm
running in O(n log n) time simplifies the inner-loop computation in several
proposed oblivious-RAM simulation methods (which utilize AKS sorting networks),
and this, in turn, implies simplified mechanisms for privacy-preserving data
outsourcing in several cloud computing applications. We provide both
constructive and non-constructive implementations of Zig-zag Sort, based on the
existence of a circuit known as an epsilon-halver, such that the constant
factors in our constructive implementations are orders of magnitude smaller
than those for constructive variants of the AKS sorting network, which are also
based on the use of epsilon-halvers.Comment: Appearing in ACM Symp. on Theory of Computing (STOC) 201
The Quark-Gluon Plasma in a Finite Volume
The statistical mechanics of quarks and gluons are investigated within the
context of the canonical ensemble. Recursive techniques are developed which
enforce the exact conservation of baryon number, total isospin, electric
charge, strangeness, and color. Bose and Fermi-Dirac statistics are also
accounted for to all orders. The energy, entropy and particle number densities
are shown to be significantly reduced for volumes less than 5 cubic fm.Comment: 8 pages, 3 figure
Quantum-Statistical Correlations and Single Particle Distributions for Slowly Expanding Systems with Temperature Profile
Competition among particle evaporation, temperature gradient and flow is
investigated in a phenomenological manner, based on a simultaneous analysis of
quantum statistical correlations and momentum distributions for a
non-relativistic, spherically symmetric, three-dimensionally expanding, finite
source. The parameters of the model emission function are constrained by fits
to neutron and proton momentum distributions and correlation functions in
intermediate energy heavy-ion collisions. The temperature gradient is related
to the momentum dependence of the radius parameters of the two-particle
correlation function, as well as to the momentum-dependent temperature
parameter of the single particle spectrum, while a long duration of particle
evaporation is found to be responsible for the low relative momentum behavior
of the two-particle correlations.Comment: 20 pages + 5 ps figures, ReVTeX, uses psfig.sty, the description is
extended to include final state interactions, phenomenological evaporation
and to fit intermediate energy heavy ion proton and neutron spectrum and
correlation dat
Analytic Solution of the Pion-Laser Model
Brooding over bosons, wave packets and Bose - Einstein correlations, we find
that a generalization of the pion-laser model for the case of overlapping
wave-packets is analytically solvable with complete n-particle symmetrization.
The effective radius parameter of the two-particle correlation function is
reduced for low values and enlargened for high values of the mean momentum in
the rare gas limiting case, as compared to the case when multi-particle
symmetrization effects are neglected.
These results explicitly depend on the multiplicity, providing a theoretical
basis for event-by-event analysis of high energy heavy ion reactions.Comment: LaTeX, ReVTeX 3.1, 7 pages, uses 1 eps figure and epsfig.sty
(shortened version
Evidence for magnetic clusters in NiV close to the quantum critical concentration
The d-metal alloy NiV undergoes a quantum phase transition from
a ferromagnetic ground state to a paramagnetic ground state as the vanadium
concentration is increased. We present magnetization, ac-susceptibility and
muon-spin relaxation data at several vanadium concentrations near the critical
concentration at which the onset of ferromagnetic order is
suppressed to zero temperature. Below , the muon data reveal a broad
magnetic field distribution indicative of long-range ordered ferromagnetic
state with spatial disorder. We show evidence of magnetic clusters in the
ferromagnetic phase and close to the phase boundary in this disordered
itinerant system as an important generic ingredient of a disordered quantum
phase transition. In contrast, the temperature dependence of the magnetic
susceptibility above is best described in terms of a magnetic quantum
Griffiths phase with a power-law distribution of fluctuation rates of dynamic
magnetic clusters. At the lowest temperatures, the onset of a short-range
ordered cluster-glass phase is recognized by an increase in the muon
depolarization in transverse fields and maxima in ac-susceptibility.Comment: 6 pages, 5 figures, submitted to Proceedings of SCES 201
Effect of magnesium doping on the orbital and magnetic order in LiNiO2
In LiNiO2, the Ni3+ ions, with S=1/2 and twofold orbital degeneracy, are
arranged on a trian- gular lattice. Using muon spin relaxation (MuSR) and
electron spin resonance (ESR), we show that magnesium doping does not stabilize
any magnetic or orbital order, despite the absence of interplane Ni2+. A
disordered, slowly fluctuating state develops below 12 K. In addition, we find
that magnons are excited on the time scale of the ESR experiment. At the same
time, a g factor anisotropy is observed, in agreement with
orbital occupancy
Spin freezing and dynamics in Ca_{3}Co_{2-x}Mn_{x}O_{6} (x ~ 0.95) investigated with implanted muons: disorder in the anisotropic next-nearest neighbor Ising model
We present a muon-spin relaxation investigation of the Ising chain magnet
Ca_{3}Co_{2-x}Mn_{x}O_{6} (x~0.95). We find dynamic spin fluctuations
persisting down to the lowest measured temperature of 1.6 K. The previously
observed transition at around T ~18 K is interpreted as a subtle change in
dynamics for a minority of the spins coupling to the muon that we interpret as
spins locking into clusters. The dynamics of this fraction of spins freeze
below a temperature T_{SF}~8 K, while a majority of spins continue to
fluctuate. An explanation of the low temperature behavior is suggested in terms
of the predictions of the anisotropic next-nearest-neighbor Ising model.Comment: 4 pages, 2 figure
- …